RSX-11M/M-PLUS RMS-11
Macro Programmer’s Guide
Order No. AA-L668A-TC

April 1983

This document is a reference manual describing the macros and
symbols that make up the interface between a MACRO-11 program
and the operation routines of Record Management Services for
PDP-11 operating systems (RMS-11).

SUPERSESSION/UPDATE INFORMATION: This revised document
supersedes the RMS-11
MACRO-11 Reference
Manual (Order No.
AA-H683A-TC) for
RSX-11M/M-PLUS users.

OPERATING SYSTEM AND VERSION: RSX-11M Version 4.1
and RSX-11M-PLUS
Version 2.1

SOFTWARE VERSION: RMS-11 Version 2.0

digital equipment corporation - maynard, massachusetts

First Printing, April 1983

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
tor any errors that may appear in this document.

The software described in this document is furnished under a license
and may be wused or copied only in accordance with the terms of such
license.

Nc responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future
documentation,

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX
DEC/CMS Edusystem UNIBUS
DEC/MMS IAS VAX
DECnet MASSBUS VMS
DECsystem-10 PDP vT
DECSYSTEM-20 PDT

pECUS RSTS dlilglit]all]
DECwriter

2K2167

HOW TO ORDER ADDITIONAL DOCUMENTATION

In Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)
In New Hampshire. Alaska, and Hawai call 603-884-6660 Digital Equipment of Canada Ltd
940 Belfast Road
In Canada vall 613-234-7726 (Ottawa-Hull) Ottawa. Ontario K1G 4C2
800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box C52008 A&SG Business Manager

Nashua. New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be piaced
with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment
Corporation. Northboro, Massachusetts 01532

CONTENTS
PREFACE xi
SUMMARY OF TECHNICAL CHANGES XV

CHAPTER 1 INTRODUCTION TO RMS-11 WITH MACRO-11

ADVANTAGES OF USING RMS-11 MACROS T
RMS-11 MACROS AND SYMBOLS . . ¢ & ¢ « & o o o o« » 1-1
1 Operations o e e e o e s e o o e o 122
2 Control Blocks and Flelds e e e e e e e e e e e 1=2
.3 POOL1S v & 4 & o o o o o o o o s o o o o o o o« « 1=-3
4 Facilities . . . « . . « . . e e e s+ e & o e+ « 1-3
5 Macros That Declare Symbols and Other Macros . . 1-3

CHAPTER

38

RMS-11 PROGRAMMING

DECLARING RMS-11 MACROS AND SYMBOLS
DECLARING RMS-11 FACILITIES . . ¢ ¢ « « o o« o o &
DECLARING AND USING POOL SPACE ., . . .« .

WRITING COMPLETION HANDLERS 2=17
USING GET-SPACE ROUTINES « « + « « « +» o 2-18

7.1 Specifying Get-Space Routines 2-18
.7.2 Writing a Get-Space Routine 2-19
.7.2.1 Get-Space Routine Interface . . . « « « + « o 2-19
.7.2.2 Pool Free-Space Lists . . ¢ ¢« v ¢« & o « o o« o 2-19

ASSEMBLING THE PROGRAM e o+ e « e s . 2=20
Assembling with the RMSMAC Macro Library . . . 2-20
Assembly-Time Errors from RMS-11 Macros . . . 2-20

2.1 2-2
2.2 2-2
2.3 2-4
2.3.1 Internal FAB and Index Descriptor Block Pool . . 2-5
2.3.2 Internal RAB PoOl & ¢ ¢« ¢ & o o o o o & 2=5
2.3.3 Key Buffer Pool . . . ¢ & ¢ ¢ o« o o o o o« o« o » 2-6
2.3.4 I1/0 Buffer Pool e e e s e s e s e . 2-6
2.3.5 Buffer Descriptor Block Pool e s s s + s+ e+ + . . 2-8
2.4 DECLARING AND INITIALIZING CONTROL BLOCKS e o o+ . 2-8
2.5 USING RMS-11 OPERATIONS e e e e e e o s o e o « 2-9
2.5.1 Setting Up Control Block Flelds e+« e + « o 2=10
2.5.1.1 SSTORE MACYO 4« &« &« o o o o o o o« o o o o« o« « « 2-10
2.5.1.2 SSET MACZO v & o o o o o o s o s o o o o o o » 2=-11
2.5.1.3 SOFF Macro . . « . . e e e s e s e e s o4 e . 2=11
2.5.2 Chaining Control Blocks e e e e e e e e e e . 2-12
2.5.2.1 Chaining a NAM Block to a FAB . . +. ¢« « « « o 2-12
2.5.2.2 Chaining XABs to a FAB . . & & « « & « « o« o o 2-12
2.5.2.3 Chaining a FAB to a RAB (CONNECT Operation) . 2-13
2.5.3 Calling Operation Routines 2-13
2.5.3.1 Call with Macro Arguments . . « « &« « o o +» o 2-13
2.5.3.2 Call with Arguments in Memory 2-14
2.5.4 Handling RetUurns . .« ¢ « ¢« ¢ « o ¢ o o o o « o« 2-14
2.5.5 Examining Returned Values 2-15
2.5.5.1 SFETCH MacCYO .+ + & o o « o o o« s o o o o o « » 2-15
2.5.5.2 SCOMPARE MACXO « « & « s+ o o o o o s o o o« o« o« 2-16
2.5.5.3 STESTBITS MacCYO « &« o o« o o o o o o o o o o o 2-17
2.6

2.7

2.7

2.7

2.7

2.7

2.8

2.8

2.8

.
N

iii

CONTENTS

CHAPTER 3 PROCESSING DIRECTORIES AND FILES

DEVICE CHARACTERISTICS . v ©«¢ ¢ o o o o o o o o o =
LOGICAL CHANNELS . &+ v o« ¢ o o o o o o o o o« o o
FILE SPECIFICATIONS AND IDENTIFIERS o s s e e s e
PRIVATE BUFFER POOLS . . . ¢ ¢ ¢ o o o o o o o & =
COMPLETION STATUS e e s e e & e 4 e e e s e e e .
DIRECTORY OPERATIONS . 4 & ¢ o o o o o o o o o o o
ENTER Operation . . . ¢ v v v ¢ ¢« o o o o o o &
REMOVE Operation+ ¢ ¢« ¢ ¢ o« o o o o o &
RENAME Operation . . . o« ¢ o o o o o o « o o o =
PARSE Operation . . . ¢ ¢ ¢« ¢« ¢« ¢ o o o o o o
FILE OPERATIONS e e o o o o o o o o e = 8 e e e
CREATE Operation ¢ « v ¢ o v v o o « o &
OPEN Operation ¢« & ¢ v v ¢ o o o« o o« o =«
DISPLAY Operation . . « ¢ ¢« v ¢ o ¢ o« o o« « o =
ERASE Operation . . & ¢ & o ¢ ¢« ¢ o o o o « o« &
EXTEND Operation . . . & ¢ o o o o o o o o s o &
CLOSE Operation . . . & & &« o « o o o o o o o =
WRITING WILDCARD LOOPS . . & ¢ + ¢ « o o « o o o« &
Introduction to Wildcarding« . +« « « + .
Initializing for Wildcarding e e e e e e e e
Finding the Next Matching F11e e e e e e e e e .

. .
.

W N

[|

WWWWWwWwWwUWwuwWwwwwWwuwwwwwwwwww
.
WOWWOWOVWOVINNNIIJAAOAO N WN -
.

.
.

O U > N
1

I
QO WWXXOVOXII~ITJdJOAOTOTTT LTIV N

|

.
N
.
W N

I WWWWWWWwWwwWWwwwwwwwwwwww
f

. Operating on the Found File 3-1
.8.1. Ending Wildcarding + « + « « « « .« . . 3-1
.8. Nonselective ERASE, REMOVE, or RENAME Wildcard
Operations . . . + v & o o o o &+ o« o « + o« « « 3-10
3.8.3 Selective Wildcard Operations 3-11
CHAPTER 4 PROCESSING RECORDS AND BLOCKS

SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS e e e e .
Synchronous Operations « . + . .
Asynchronous Operations+ « . .

COMPLETION STATUS e e e e e e e e e e e e e e e

STREAMS . . . ¢ ¢ ¢ v ¢ ¢ e o o o o o o o o o o

RECORD PROCESSING . . . ¢« ¢ o o o o o o o o o o =
Record Streams . . . « ¢ ¢ o 4 o o o o o s o o
Record Context + ¢ ¢ ¢ v ¢ ¢ ¢ ¢ o o o .
Record Access Modes . . . ¢ o & ¢ & o o + o o
Sequential ACCESS .+ ¢ v ¢ ¢ 4 4 e e e e e e e .
Key ACCESS . + ¢ v o o o o o o o o o o o o o o =«
REA ACCESS v v v o o o o o o o s o o o o o o o o
Record Buffers « ¢« ¢« ¢ ¢ o 4 4 v 4 . .
Locate Mode + ¢ v ¢ ¢ @ o o« o o« o« o o .
Stream Operations . . . ¢ ¢ & ¢« ¢« ¢ « o o 0 . .
CONNECT Operation . . o & o o o & o o o o « o &
FLUSH Operation . . . ¢ & v ¢ o o o o « o o o« &
FREE Operation . . . « o ¢ o« o o o o o o o o « =
NXTVOL Operation ¢ ¢ « o o o o o o « o &
REWIND Operation . .« . o & o o o o o o o o o« o =
WAIT Operation . . e e e e e e e e e e e e e
DISCONNECT Operatlon e s e 6 o e o o o o o o e
Record Operations . .« « ¢ & o o o o « o o o o« =

i

. .
.

N~

[

.
.

I

.
.
.

.
w N =
i

I
CQCOWVWWOWOWWWOLWWOWOIIOXXIIATUEB_WWWNONEHHE

. e
. e
.

t

.
.
.

|

|

.
.
.

|

.
|

.« .
. e

. .

No e wN -
|

.
U1 UT U1 UT U b o D D B D o D B D D D D D D D D D D D D W N e
.
NNNNNNNOAOORARNNND U WWWWN
.

I Y Tl N T A i
|

.4.7.1 FIND Operation . « + o & &+ o o o & o o + o« « o+ 4-1

.4.7.2 GET Operation . . . o & ¢ & o & o o o o « « o« 4-1

.4.7.3 PUT Operation . . . ¢ ¢ ¢ &« « « & « « « « « o 4-10
.4.7.4 DELETE Operation . . .« ¢ ¢ ¢ & & o« o « o o « o 4-11
.4.7.5 UPDATE Operation . . ¢« ¢« ¢ ¢ o« o o« o « &+ o o« o+ 4-11
.4.7.6 TRUNCATE Operation o ¢« ¢« &+ o o o o o 4-11
. BLOCK PROCESSING . . . ¢ ¢ o o o o o o o o o o 4-11

Block Streams . . ¢ o &+ ¢ o ¢ o o o « o o o o 4-11
Block Context . ¢ ¢ ¢ o« ¢ o o o o o o o o o o 4-12
Block Access Modes . . +v v ¢ ¢ o o« & o o« « o o 4-12
Sequential Access v 4 v e e e e .. 4-12

B S Y I T St T e R I S
.

.
-

.
wwhN -

iv

CHAPTER

CHAPTER

.
N

. e e LY
. e o ¢ .

«
w N = W N

G N NN NN N NI N TS
.
[GRGNCES NG RGN RGN RS RS
.
AUV W
.

.
. o
.

w

oo ooy,
.
HHEFOOJOhUd WN -

5.27

6.1
6.1.
6.1.
6.1.
1
1
1

6.
6.
6.
6.1.7
6.1.8
6.1.9
6.1.10
6.1.11
6.2

VBN Access
Block Buffers
Stream Operations
CONNECT Operation

CONTENTS

.

FREE Operation .
WAIT Operation .
DISCONNECT Operation .
Block Operations
READ Operation .
WRITE Operation
SPACE Operation

. -

. . .

OPERATION MACRO DESCRIPTIONS

SCLOSE MACRO

SCONNECT MACRO
SCREATE MACRO
S$SDELETE MACRO
SDISCONNECT MACRO
SDISPLAY MACRO

SENTER MACRO
SERASE MACRO

.

SEXTEND MACRO
SFIND MACRO (SEQUENTIAL ACCESS)
SFIND MACRO (KEY ACCESS)
SFIND MACRO (RFA ACCESS)

SFLUSH MACRO
SFREE MACRO

. .

. .

. .

. . .

- . . .

. . . .

SGET MACRO (SEQUENTIAL ACCESS) .
SGET MACRO (KEY ACCESS)
SGET MACRO (RFA ACCESS)
SNXTVOL MACRO

SOPEN MACRO
SPARSE MACRO

.

. .

. .

. . .

. . . .

SPUT MACRO (SEQUENTIAL ACCESS) .
SPUT MACRO (KEY ACCESS)
SREAD MACRO (SEQUENTIAL ACCESS)

SREAD MACRO (VBN

SREMOVE MACRO
SRENAME MACRO
SREWIND MACRO
SSEARCH MACRO

SSPACE MACRO
STRUNCATE MACRO

SUPDATE MACRO

SWAIT

MACRO

ACCESS)

SWRITE MACRO (SEQUENTIAL

SWRITE MACRO (VBN ACCESS)

CONTROL BLOCK FIELDS

ALL BLOCK SUMMARY

AID
ALN
ALQ
AOP
AOP
BKZ
BLN
coD
DEQ
LoC
NXT

Field
Field
Field
Field
Field
Field
Field
Field
Field
Field
Field

in
in
in
in
in
in
in
in
in
in
in

ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL
ALL

DAT BLOCK SUMMARY

- . .

Block
Block
Block
Block
Block
Block
Block
Block
Block
Block
Block

ACCESS)

. . .

. - - .
. . . .
. . . .

. . . .

(XBSCTG
(XBSHRD
(XBSLAL
(XBSALL

Mask)

Mask)

Code)

Code)

4-13
4-13
4-13
4-13
4-13
4-14
4-14
4-14
4-14
4-14
4-14

.
[o2 W< W) W'\ Mo A 0o \ W @) Mo Y
|

ol ol | [}
HFOWOJdJoOWUdWN

AN
U

o

- Wi

.
.

¢ s e
« o e

.
.

© & e e s+ s e & v e e e e e e s s+ s e 8 e s s 2 e e e

SRR R EPRARREEBEBREWWwWwwWwNNNONDNNDDN
e 8 & e s 4 e e 8 e s s e & 2 s 0 s » D S o

Ny U R W

« e »
o« s e .

BB R WWWWWWWWWWENRNNNNDNNONNDNONNNO R OO0 W

NHOLCOJOUPE WINHHOWONOOTUEdWNHFOWOVWOdOUEE WNH—HO

.
.

.
.

.
.

= b b= b W0 00 S O U W N

U W N+ O

.
.

[e) S RNe) Ne) Be e NEe e) o) Be) e No) Mo A N0 A M@ A KA WA N0 Mo e Mo K« N e ANl o) oW el e\ Moo Mol e) W e W el e) W N e I e) I o) o) i e e) M) e)W) o) o) We) M) e)Mo) We A e) Be) W o2 T)W A Yo AW e 2 Wile)Mo)Mo 2 W0) WEe N e)
“« .
Y

CONTENTS

BLN Field in DAT Block (XBSDTL Code) 6-15
CDT Field in DAT Block . . «v v v v v « « « « . 6-16
COD Field in DAT Block (XBSDAT Code) 6-17
EDT Field in DAT Block « v v v ¢ v o &« & « « . 6-18
NXT Field in DAT BloCK . v v v v v o o o o o & 6-19
RDT Field in DAT BlocK v v v « o« o o o o « « « 6=20
RVN Field in DAT Block . . v v v v v o o o o« 6-21
FAB SUMMARY e e e s s e 4 e & 4 e e o o o o o 6-22
ALQ Field in FAB . . v v 4 o« o o o o+ o o o o« . 6=25
BID Field in FAB (FBSBID Code) . v o v o o « 6-26
BKS Field in FAB . . v v « o « ¢ o o o o o o« o« 6=27
BLN Field in FAB (FBSBLN Code) . . « v « « . . 6-28
BLS Field in FPAB . . v +v & o o o« o o o o« +« « « 6=29
BPA Field in FAB . . &+ ¢ ¢ v « o o o o« o« « « « 6=30
BPS Field in FAB . v v « ¢ o o o o o o o o« « o« 6=31
CTX Field in FBAB . . v ¢ &v ¢ o o « o o o o« o 6-32
DEQ Field in FAB . . v ¢ ¢ v o o « o o o o o« =« 6-33
DEV Field in FAB . . v v ¢ ¢ o o o ¢ « « « « . b6=34
DNA Field in FAB . . . +v v v ¢ o« « o o o« « « « 6=35
DNS Field in FAB . . v 4 « o o o o o o o o« « « 6=-36
FAC Field in FAB . ¢ ¢ ¢ ¢ o o o o o o o o o = 6-37
FNA Field in FAB . v v v ¢ & o o o o o o o« o« 6-38
FNS Field in FAB . . . « ¢ o« + o« o o o o o« « . 6=39
FOP Field in FAB (FBSCTG Mask) « « . . 6-40
FOP Field in FAB (FBSDFW Mask) . . . « « « . . 6-41
FOP Field in FAB (FBSDLK Mask) . . « « « « . . 6-42
FOP Field in FAB (FBSFID Mask) . +. « « « &« +« 6-43
FOP Field in FAB (FBSMKD Mask) . ¢« « ¢ « « « 6-44
FOP Field in FAB (FBSNEF Mask) « « . . 6-45
FOP Field in FAB (FBSPOS Mask) . . « « « « .« . 6-46
FOP Field in FAB (FBSRWC Mask) . . . « « . . . 6-47
FOP Field in FAB (FBSRWO Mask) . « « o « « « 6-48
FOP Field in FAB (FBSSUP Mask) . « « o « « « 6-49
FOP Field in FAB (FBSTMP Mask) . « « « « « « . 6-50
FSZ Field in FAB . . +. &+ v +v « « o « o« « o« « . 6=51
IFI Field in FAB . . v v v ¢« ¢« 4 « o o « o« « « 6=52
LCH Field in FAB . +. ¢ +v ¢ v « o « o « &« « « . 6-53
LRL Field in FAB . . . v &« &« ¢ ¢ 4 o« o « o« o« . 6=-54
MRN Field in FAB . &+ +v ¢ v « « « o o« « « + « + 6=55
MRS Field in FAB . . v « « &« « ¢ « o o o« « « « ©6-56
NAM Field in FAB . . v 4 ¢« ¢ o o « o o o o« « o« ©6=-57
ORG Field in FAB . . v v ¢ o o o o o o o o« o« & 6-58
RAT Field in FAB . v v v ¢ v o o o o o o o o . 6-59
RAT Field in FAB (FBSBLK Mask) 6-60
RFM Field in FAB . . & v ¢ « 4 « o o o o o« « « ©6b-61
RTV Field in FAB . . v v v v o o o o o o« o o & 6-62
SHR Field in FAB . . v v ¢« « o o « « o « o« « . ©6-63
STS Field in FAB . . v v ¢ o« o o o o o o o o« = 6-64
STV Field in FAB . . v v & ¢ ¢ o « o o « o« + « ©6-65
XAB Field in FAB . . + v v v v v v o o o o« o . 6-66
KEY BLOCK SUMMARY e e e e e e e e e e e e e e W 6-67
BLN Field in KEY Block (XBSKYL Code) 6-69
COD Field in KEY Block (XBSKEY Code) 6=70
DAN Field in KEY Block . v v v v v v v o o« o . 6~-71
DBS Field in KEY BloCcKk « v ¢ ¢ « ¢ « o o o« « « 6=72
DFL Field in KEY Block . . . « ¢« ¢« & ¢« « « « o« 6-=73
DTP Field in KEY BlOCK &+« v v ¢ « o o « « o o . 6-74
DVB Field in KEY Block ¢« v v« o ¢ o o o o o« « 6-75
FLG Field in KEY Block (XBSCHG Mask) 6-76
FLG Field in KEY Block (XB$DUP Mask) 6-=77
FLG Field in KEY Block (XBS$SNUL Mask) 6-78
IAN Field in KEY Block .+« v «v v v ¢ « o« « o« « « 6=79
IBS Field in KEY Block +« + +« ¢ « ¢« « « « « « . 6=80
IFL Field in KEY Block . +« « ¢« ¢« ¢ ¢« « « « « . 6-81
KNM Field in KEY Block . . « ¢« ¢ & ¢ « &« « . . 6-82
LAN Field in KEY BlocK &« v ¢ v v o o o o o o 6-83

vi

¢ o e e o e .
e o e o s e

NNNMOMNDNNNDNHFHF-
N WD OWWLoJON

e & o e & & o © & s e o
® ¢ & e s & o o s .

HHEFFHWLWO~NAAUL D WD

¢ o o & e o
o o+ o Y
w N O

.
.

® ® & & & ¢ & ¢ 2 * & e & * 8 e s ¢ 2 " s & 2 e 4 o e v
e s 8 & e ® s e s 8 e s s e e e e 8 e e e s s e s s @ * .
AU W N

NN NNNONNNOMNNNFRERFRPHFFHFRFEFRFRERFEFRFEFRFRROOIOOU S WN -

OOV WNHOWOWOIOTUIE WNEFO

e+ s 0
Ty .

[e) N e)NNe) e e o) TNe) o) W) Nie) We) Ie Ie) I e) Mo) W o) N o) Je) I o) B o) o) WEe) o) W o) W e) o) o) Be) Be) B I e) W«) BN e AR B0) We) I e) We) Be) o) e)N o) We) B @) W e) B o) Wo) e) W o) ie) W e)W«) Mo) Nie) BEe) B o) B o)M«) e) e) Mo) Mo) We) W@) W'a AW @)

VOO0 NNNN I I NN NAININNANANNANNNdNNAYNIINNNN NN Yoo 00T ut Ot U1 b D DD DD DD

> w N

CONTENTS

LVL Field in KEY Block . ¢ « +v ¢ ¢ ¢ o « o o« . 6-84
MRL Field in KEY Block . . . « v ¢ ¢« ¢ o « « . 6-85
NSG Field in KEY BloCK &« +v ¢« ¢ v o o o o o o« = 6-86
NUL Field in KEY Block . ¢ v ¢ & ¢« « &« « « « . 6-87
NXT Field in KEY Block +« +« ¢« & ¢ « &« « « « « . 6-88
POS Field in KEY Block . . « ¢« « « « « « . . . 6-89
REF Field in KEY Block . « « ¢ v &« « « « « « « 6=90
RVB Field in KEY Block . . ¢ ¢ v « « « « &« + . 6-91
SIZ Field in KEY Block . ¢« . v & ¢ o« o & o« o« . 6-92
TKS Field in KEY Block+« ¢« ¢« « « « « . . 6=93
NAM BLOCK SUMMARY e e o e s o e+ o o e o e o o 6-94
DID Field in NAM Block . . +v ¢ ¢« « « « « « « o+ 6-95
DVI Field in NAM BlocKk « ¢« +« ¢ « ¢ ¢ « & « « . 6-96
ESA Field in NAM Block ¢« « v v & v &« « & « « . 6=-97
ESL Field in NAM Block « « « « « « . . #6-98
ESS Field in NAM Block « +« v v ¢ ¢ &« « « « « . 6-99
FID Field in NAM Block . . ¢« ¢« ¢« ¢« ¢« « « . . . 6-100
FNB Field in NAM Block . . « . + « « « « « « . 6=101
FNB Field in NAM Block (NBSWCH Mask) 6-102
RSA Field in NAM BloCK + v v & & &« o o « o+ o« o« 6=103
RSL Field in NAM Block . . +« « +« ¢« ¢« « « . . . 6=-104
RSS Field in NAM Block . « « ¢« ¢ ¢ « « « « « o 6-105
WCC Field in NAM Block « ¢« ¢« « « « « . b=106
WDI Field in NAM BlocKk .+« v v v &« &« « o « « « o« 6=-107
PRO BLOCK SUMMARY e e e e e e e e s e s e e« e« . 6-108
BLN Field in PRO Block (XBSPRL Code) 6-109
COD Field in PRO Block (XBSPRO Code) 6-110
NXT Field in PRO Block . . . « ¢« ¢« v +« ¢« « « . 6-111
PRG Field in PRO BloCK &« &« ¢ « « o o o o &« o« « 6=-112
PRJ Field in PRO BlocK . . +« &« ¢« &« « « o« « « o« 6=-113
PRO Field in PRO Block . « « + & ¢ ¢ « &« « « . 6-114
RAB SUMMARY e e o e s+ 4 e o 4 s e e e 4 e e &« . b6=-115
BID Field in RAB (RBSBID Code) . . +. 6-=116
BKT Field in RAB . . & ¢ v & o o o o o o« o« o« o 6=117
BLN Field in RAB . . &+ + « o « o o o o« o« « « o+ 6=-118
CTX Field in RAB . . . v v ¢ ¢« « « « « o « « o« 6=119
FAB Field in RAB . . v &+ v ¢ @« 4« « o « o« « « . 6=120
ISI Field in RAB . . & ¢ ¢ v & o« s o o o« o« o o 6=121
KBF Field in RAB . . v ¢ &« ¢« & o o o « o « o« . 6=122
KRF Field in RAB .+ v v ¢ + o + e « o o o « o« « 6=-123
KSZ Field in RAB . v v ¢« ¢« « o o o o « o« o« « . 6-124
MBC Field in RAB . . v v &« v ¢ « o o o o o o o 6=125
MBF Field in RAB . v &+ +v ¢ o o o o o o « o« + . 6-126
RAC Field in RBAB . ¢« ¢« ¢« ¢ 4 o o o o o o o« o« o 6=-127
RBF Field in RAB &+« v ©+v v « « « o « o o« « « « . 6=128
RFA Field in RAB . . +. v 4 &« o« o @« o« o « « + + 6=129
RHB Field in RAB &« . ©v v ¢ « o o o o« « o o « o 6=130
ROP Field in RAB (RBSASY Mask) . . + ¢ « .« . . 6-131
ROP Field in RAB (RBSEOF Mask) 6=132
ROP Field in RAB (RBSFDL Mask) 6-133
ROP Field in RAB (RBSKGE Mask) . « « « « « . . 6-134
ROP Field in RAB (RBSKGT Mask) . . +« « « + . . 6-135
ROP Field in RAB (RBSLOA Mask) . . . « 6-136
ROP Field in RAB (RBSLOC Mask) 6=-137
ROP Field in RAB (RB$MAS Mask) 6-138
ROP Field in RAB (RBSUIF Mask) . «. . « « « . . 6=139
RSZ Field in RAB . &« +v « « « o« o o o« o o o « o 6-140
STS Field in RAB . & & & « & o« o o o« o o o« « o 6=-141
STV Field in RAB . v v «v v o o o o o o o o o« o« 6=-142
UBF Field in RAB . . ¢ v ¢« & &« & « « « o « « . 6=-143
USZ Field in RAB . . & « ¢ + o o o o o « « « . 6-144
SUM BLOCK SUMMARY e e 4 e s s e e e e e e e« o o 6=145
BLN Field in SUM Block (XBSSML Code) 6-146
COD Field in SUM Block (XBSSUM Code) 6-147
NOA Field in SUM Block +« ¢« v &« « « . . 6-148
NOK Field in SUM Block .« + v ¢ v v o o o« « . . 6=149

vii

CONTENTS

6.8.5 NXT Field in SUM Block . . + ¢« « « « « « . + . 6-150
6.8.6 PVN Field in SUM Block + « « « « . . 6-151
CHAPTER 7 EXAMPLE PROGRAMS
7.1 PARSE - SPARSE TEST e e e e e e e e e e e e e e 1-2
7.2 SEARCH - SSEARCH TEST Y
7.3 ERASE - SERASE TEST e s s s e e e s e s e e s e 7-10
7.4 RENAME - SRENAME TEST . e e e o s e s e e 7-14
7.5 GSA -- CORE SPACE ALLOCATOR e e e e e e e e e . 7-18
APPENDIX A COMPLETION CODES AND FATAL ERROR CODES
A.l COMPLETIONS RETURNED IN STS AND STV FIELDS A-1
2 FATAL ERROR COMPLETIONS e e s e s e o e« o o = A-16
APPENDIX B ASSEMBLY~-TIME MESSAGES
APPENDIX C MACROS THAT DECLARE SYMBOLS AND OTHER MACROS
APPENDIX D RMS~11 WITH DIFFERENT OPERATING SYSTEMS
D.1 PRO/RMS-11 VERSUS RSTS/E RMS-11 e ¢ e« o s« & e« & o D=1
D.1.1 Different Behaviors . . . e+« e+ + o +« + « « D-1
D.1.2 Features Not Supported on RSTS/E e+ +« « « « « . D=2
D.1.3 Features Not Supported on P/OS D=2
D.2 PRO/RMS-11 VERSUS RSX-11M/M-PLUS RMS-11 D-3
D.3 RSTS/E RMS-11 VERSUS RSX-11M/M-PLUS RMS-11 D-3
D.3.1 Different Behaviors e« +« « « « « « D-3
D.3.2 Features Not Supported on RSTS/E e« « + « « « . D-4
INDEX
EXAMPLES
EXAMPLE 7-1 PARSE - S$PARSE TeSt . . . v « ¢ ¢ & o & o o « « o 1-3
7-2 SEARCH - SSEARCH Test Y R
7-3 ERASE - SERASE Test e e e e s s s e e e s e e e 7-11
7-4 RENAME - SRENAME Test e e o e o e e s s e o = = 7-15
7-5 GSA - Core Space Allocator « ¢« « « « « . 7-18
TABLES
TABLE 5-1 CLOSE Input Fields . ¢ v ¢ ¢ ¢« ¢ ¢ « « o« o o« « + « 5-5
5-2 CLOSE Output Fields +« & &+ « & & « o« & « « 5-5
5-3 CONNECT Input Fields ¢ « ¢« « « « « . 5-8
5-4 CONNECT Output Fields e e+ e« 4 e +« 4 e o +« e+ « « 5-8
5-5 CREATE Input Fields ¢ ¢« ¢« ¢« « « « « 5=22
5-6 CREATE Output Fields . . . « ¢ &« o « &« « o« + + « 5-24
5-7 DELETE Input Fields « ¢« ¢« « « « « « . . 5-26
5-8 DELETE Output Fields . . . « +« + « « &« +« « « « « 5-26
5-9 DISCONNECT Input Fields e e e e e e s e e o e 5-28
5-10 DISCONNECT Output Fields « + « « « + . 5-28
5-11 DISPLAY Input Fields « ¢ « ¢ « « « « « « 5-33
5-12 DISPLAY Output Fields . . . ¢« « ¢ « « « « « « « 5-33

viii

[e2We)
[)0,]

[IR T O N S (O S I |
o)
~

Nooooaoaooaountut
HONOU W

CONTENTS

ENTER Input Fields
ENTER Output Fields
ERASE Input Fields
ERASE Output Fields
EXTEND Input Fields
EXTEND Output Fields . .

FIND (Sequential Access) Input Fields

FIND (Sequential Access) Output Fields

FIND (Key Access) Input Fields .
FIND (Key Access) Output Fields
FIND (RFA Access) Input Fields .
FIND (RFA Access) Output Fields
FLUSH Input Fields
FLUSH Output Fields
FREE Input Fields
FREE OQutput Fields

GET (Sequential Access) Input Fields

GET (Sequential Access) Output Fields

GET (Key Access) Input Fields .
GET (Key Access) Output Fields .
GET (RFA Access) Input Fields .
GET (RFA Access) Output Fields .
NXTVOL Input Fields
NXTVOL Output Fields
OPEN Input Fields
OPEN Output Fields
PARSE Input Fields . . . « . . .
PARSE Output Fields

PUT (Sequential Access) Input Fields
PUT (Sequential Access) Output Fields

PUT (Key Access) Input Fields .
PUT (Key Access) Output Fields .

READ (Sequential Access) Input Fields

.

.

.

.

.

-

READ (Sequential Access) Output Fields

READ (VBN Access) Input Fields .
READ (VBN Access) Output Fields

REMOVE Input Fields
REMOVE Output Fields
RENAME Input Fields
RENAME Output Fields
REWIND Input Fields
REWIND Output Fields
SEARCH Input Fields
SEARCH Output Fields
SPACE Input Fields
SPACE Output Fields
TRUNCATE Input Fields
TRUNCATE Output Fields
UPDATE Input Fields
UPDATE Output Fields
WAIT Input Fields

WRITE (Sequential Access) Input
WRITE (Sequential Access) Output
WRITE (VBN Access) Input Fields

WRITE (VBN Access) Output Fields
ALL Block Summary . . « « « .+ .
DAT Block Summary« « . .
FAB Summary . « « o« o « o o« o &
KEY Block Summary . . « « + «
NAM Block Summary
PRO Block Summary
RAB Summary . « o o o o o o« o @
SUM Block Summary . « « « « .«
Macros That Declare Symbols and

ix

.

.

Fields
Fields

.

.

Other Macros

5-38
5-39
5-44
5-44
5-48
5-438
5-50
5-50
5-53
5-53
5-55
5-55
5-57
5-57
5-59
5-59
5-62
5-62
5~66
5-66
5-69
5-69
5-71
5-71
5-82
5-83
5-89
5-89
5-93
5-94
5-97
5-97
5-99
5-99
5-101
5-101
5-106
5-106
5-112
5-113
5-115
5-115
5-118
5-119
5-121
5-121
5-123
5-123
5-125
5-125
5-126
5-128
5-128
5-130
5-130
. 6-2
6-14
6-22
6-67
6-94
6~108
6-115
6-145
. C-1

PREFACE

MANUAL OBJECTIVES

This manual is a guide to the use of RMS-11 in programs written in
MACRO-11. It contains information necessary to writing MACRO-11
programs and subprograms that use RMS-11 operations.

INTENDED AUDIENCE

This manual is intended for both the MACRO-11 programmer who wants to
use RMS-11 operations and the high-level language programmer who wants
to use RMS-11 operations in a MACRO-11 subprogram.

STRUCTURE OF THIS DOCUMENT

e Chapter 1, Introduction to RMS-11 with MACRO-11, 1introduces
RMS-11 macros and symbols that are the interface between a
MACRO-11 program and RMS-11 operation routines,.

e Chapter 2, RMS-11 Programming in MACRO-11], shows how to use
RMS-11 macros and symbols in a MACRO-11 program.

e Chapter 3, Processing Directories and Files, shows how to use
directory and file operations to process directories and
files.

® Chapter 4, Processing Records and Blocks, shows how to use
stream operations and either record or block operations to
process records or blocks.

® Chapter 5, Operation Macro Descriptions, describes in detail
each RMS-11 operation macro, the control blocks it uses, the
options you can specify in each control block field, and the
values returned in control block fields.

e Chapter 6, Control Block Fields, summarizes the use of each
control block, field, value, and mask.

e Chapter 7, Example Programs, contains programs and program

segments that 1illustrate the uses of some major RMS-11
features.

Xi

PREFACE

e Appendix A, Completion Codes and Fatal Error Codes, 1lists
RMS-11 completion symbols, values, and meanings.

e Appendix B, Assembly-Time Messages, lists the messages that
RMS-11 macros can generate at assembly time.

e Appendix C, Macros That Declare Symbols and Other Macros,
describes RMS-11 macros that declare other RMS-11 macros and
define RMS-11 symbols.

e Appendix D, RMS-11 with Different Operating Systems,
describes the differences among the behaviors of RMS-11 with
various operating systems.

¢ The index includes a major entry for each RMS-11 macro,
control block field mnemonic, keyword macro argument, and
symbol family.

ASSOCIATED DOCUMENTS

RSX-11M/M-PLUS RMS-11: An Introduction introduces the major concepts
of RMS-11, Iintroduces the RMS-11 operations, and defines key terms
required for understanding RMS-11 capabilities and functions. You
should read the introduction before proceeding to other manuals in the
RMS~-11 documentation set.

The RSX-11M/M-PLUS RMS-11 User's Guide provides detailed information
for both MACRO-11 and high-level language programmers on file and task
design using RMS-11.

The RSX-11M/M-PLUS RMS-11 Utilities manual 1is Dboth a wuser and a
reference document for all users, both programmers and nonprogrammers.
It describes the RMS-11 utilities that are available for creating and
maintaining RMS-11 files.

In addition, the RSX-11M/M-PLUS RMS-11 Mini-Reference Insert 1is an
easy-reference gulide for users who are familiar with RMS-11 and its
documentation. It summarizes the RMS-11 utilities and error codes.

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in statement formats 1in this
document:

UPPERCASE Uppercase characters within a string indicate
characters that you must include in the string; you
can type the characters in uppercase or lowercase.

lowercase Lowercase characters within a string indicate a
user-selected variable; text following the
statement format defines the syntax of the variable.

[] Square brackets indicate that the enclosed string is
optional user input.

“ee A horizontal ellipsis indicates that the immediately

preceding optional string (enclosed in square
brackets) may be repeated.

xii’

From: DES.TMP

other

PREFACE

In examples of commands you enter and system
responses, all output lines and prompting characters
that the system prints or displays are shown in
black letters. All the lines you type are shown in
red letters.

A nonalphabetic character (except a square bracket
or a period that is part of an ellipsis) indicates a
character that you must include in the string.

Numbers in this manual that give the values of RMS-11 symbols are in
octal radix (base 8) unless otherwise indicated; all other numbers in
this manual are in decimal radix (base 10).

xiii

SUMMARY OF TECHNICAL CHANGES

This revision contains the following technical changes:

The new operation macros $ENTER, S$PARSE, S$REMOVE, S$SRENAME,
and S$SEARCH are documented, along with the related NAM block
fields FNB, RSA, RSL, and RSS.

The new facility for wildcard file specification is
documented.

The extension of access sharing is documented, along with the
related masks FB$SUPI and FBSNIL for the SHR field of the FAB.

Random access to a sequential file with fixed-length records
(similar to random access to a relative file) is documented.

The new print-format record-output handling 1is documented,
along with the related symbol FBSPRN for the RAT field of the
FAB.

The new sequential block access is documented; the previous
block access (formerly called block I/0) is now called VBN
access (virtual block number access).

Block access can now be used to copy RMS-11 files without the
need to modify the file's attributes manually.

The addition of the success handler facility for file
operation macros (SCLOSE, SCREATE, S$DISPLAY, SERASE, SEXTEND,
and SOPEN) is documented.

Increased device transparency for record access copy
operations is supported. VFC and stream record formats are
supported on unit-record devices. Relative and indexed files
can be created for record access on nondisk devices, although
they will appear as and be processed as sequential files
there.

The obsolete RMS-11 initialization macros $INIT and SINITIF
are no longer documented. These macros are now defined as
no-ops in the RMS-11 macro 1library RMSMAC.MLB; their
previous functions are no longer needed because RMS-11 is now
self-initializing. However, programs that use the SINIT and
SINITIF macros 1in their previous senses remain valid under
RMS-11 Version 2.0.

Xv

SUMMARY OF TECHNICAL CHANGES

Each XAB type now has a distinct name; the following are the
new names:

ALL block Area allocation XAB
DAT block File date XAB

KEY block File key XAB

PRO block File protection XAB
SUM block File summary XAB

The following symbol declaration macros are documented:

FABSBT Declare FAB value and mask symbols
NAMSBT Declare NAM block value and mask symbols
RABSBT Declare RAB value and mask symbols
XABSBT Declare XAB value and mask symbols
XBAOFS Declare ALL block symbols

XBDOFS Declare DAT block symbols

XBKOFS$ Declare KEY block symbols

XBPOFS$ Declare PRO block symbols

XBSOFS$ Declare SUM block symbols

The description of each operation macro includes the use and
meaning of each associated control block field.

The value of each RMS-11 user symbol is documented.

The structure of each RMS-11 | user control block is
documented.

The FAB has a new LRL (longest record length) field for
sequential files (corresponding to the VAX-11 RMS XAB LRL
field).

The date/time XABs have changed in size from 36 to 46 octal
bytes.

For ANSI magtape, RMS-11 allows fixed-format records to be
less than 18 bytes.

<CTRL/Z> and <ESC> are no longer recognized as record
terminators for stream files; and <CTRL/Z> is no longerxr
recognized as a file terminator for stream files.

RMS-11 now pads stream files with null characters to the high
block of the file (not just to the end of the current block).
This means that RMS-ll-created stream files can be read by
programs that do not recognize the EOF value from the file
header.

xvi

CHAPTER 1

INTRODUCTION TO RMS-11 WITH MACRO-11

RMS-11 macros and symbols provide access to RMS-11 operations from a
MACRO-11 program.

1.1 ADVANTAGES OF USING RMS-11 MACROS
When you wuse RMS-11 operations from a high-level 1language, the
language restricts your options for some operations. If you cannot

accept these restrictions, you can write your program (or some of its
modules) in MACRO-11; this allows you full access to RMS-11 options.

1.2 RMS-11 MACROS AND SYMBOLS

RMS~-11 macros and symbols define the interface between a MACRO-11
program and RMS-11l operation routines. Definitions for these macros
and symbols are in the RMS-11 macro library, RMSMAC.MLB.

RMS-11 macros allow your program to:

e Call RMS-11 operations

e Declare and manipulate control blocks, through which your
program communicates with RMS-11 operation routines

e Declare and manipulate space pools
e Declare needed RMS-11 facilities

e Extract (from the macro library RMSMAC.MLB) definitions for
RMS-11 macros and symbols

The following sections introduce RMS-11 macros and symbols.

INTRODUCTION TO RMS-11 WITH MACRO-11

1.2.1 Operations

An RMS-11 operation macro calls a routine that performs an RMS-11
operation. The name of an operation macro 1is the name of the
corresponding operation, with a prefixed dollar sign (§). The
following are the RMS-11 operation macros:

Directory File Stream Record Block
Operation Operation Operation Operation Operation
Macros Macros Macros Macros Macros
SENTER SCLOSE SCONNECT SDELETE SREAD
SPARSE SCREATE SDISCONNECT SFIND SSPACE
SREMOVE SDISPLAY SFLUSH SGET SWRITE
SRENAME SERASE SFREE SPUT
SSEARCH SEXTEND SNXTVOL STRUNCATE

SOPEN SREWIND SUPDATE

SWAIT

An RMS-11 operation returns a value called a completion code that
indicates either a successful operation or an error. RMS-11
completion symbols give names to these completion codes.

When your program uses an RMS-11 operation macro to call an operation
routine, it <can specify completion handlers (one for a successful
completion, one for an error completion) that RMS-1l1 calls when the
operation completes. The RMS-11 completion-return macro (SRETURN)
generates a proper return from a completion handler to the «calling
point in your program.

1.2.2 Control Blocks and Fields

Your program and RMS-11 operation routines communicate by passing data
in blocks called control blocks. Each control block is divided into
fields; each field has a 3-letter mnemonic name.

An RMS-11 block-declaration macro allocates space for a control block
and initializes fields containing the block 1length and block
identifier. There is a block-declaration macro for each kind of
control block.

An RMS-11 field-initialization macro sets an initial value for a
control block field at assembly time. There are field-initialization
macros for most control block fields (those that you might reasonably
want to initialize).

An RMS-11 field-access macro manipulates the value of a control block
field during program execution. There are field-access macros for
copying values to and from fields (SSTORE and SFETCH), for comparing
field values with other values ($COMPARE), and for setting, clearing,
and testing bits in fields ($SET, $SOFF, and STESTBITS).

RMS-11 code and mask symbols give names to the codes and bit masks
used in many fields. This allows your program to determine the
details of an RMS-11 operation without wusing the numeric values
associated with those details.

RMS-11 field-offset symbols give names to the 1locations of fields
within their control blocks. Because RMS-11 field-initialization and
field-access macros are based on field names, your program need not
use field-offset symbols.

INTRODUCTION TO RMS-11 WITH MACRO-1l1l

RMS-11 control blocks and their general uses are as follows:

e ALL (area allocation) block - contains information about a
file area.

e DAT (file date) block - contains file dates and the file
revision number.

e FAB (file access block) - contains general information about a
file and how a program will access it.

e KEY (file key) block - contains information about a file index
and its key.

e NAM (file name) block - contains special information about the
device, directory, and specification for the file, along with
wildcarding information.

e PRO (file protection) block - contains file owner and
protection information.

e RAB (record access block) - contains general information about
a stream and a record or block, and how the program accesses
the record or block.

e SUM (file summary) block - contains the number of areas and
indexes in the file, and a version number indicating the
internal structure level of the file.

1.2.3 Pools

RMS-11 conserves space by dynamically allocating and deallocating
space set aside in pools. RMS-11 pool-declaration macros allocate
space for pools,.

An RMS-11 routine called the get-space routine handles pooled space.
You can substitute your own get-space routine for the RMS-11 routinej;
you can use RMS-11 get-space-address macros to initialize the address
of the get-space routine at assembly time (GSAS), to change the
address to that of a different routine during program execution
(SSETGSA), and to return the address of the current routine during
program execution (SGETGSA).

1.2.4 Facilities

The RMS-11 facilities-declaration macro (ORGS$S) assists RMS-11 1in
determining exactly which routines your program needs during program
execution.

1.2.5 Macros That Declare Symbols and Other Macros

To extract the definition of an RMS-11 macro from the macro 1library,
your program must declare the macro in a .MCALL assembler directive.

Many RMS-11 macros declare related macros and define related symbols;
some RMS-11 macros have the sole purpose of declaring related macros
and defining related symbols. Using these macros simplifies the job
of declaring macros and defining symbols in your program.

INTRODUCTION TO RMS-11 WITH MACRO-1l1l

For example, the FAB-declaration macro FABSB declares FAB
field-initialization macros and FAB offset, code, and mask symbols;
the SFBCAL macro declares all directory and file operation macros;
the $RMSTAT macro declares all completion symbols.

To use

CHAPTER 2

RMS-11 PROGRAMMING

RMS-11 operations in a MACRO-11 program, your program must:
Declare RMS-11 macros and symbols

Before your program refers to an RMS-11 macro or symbol, it
must extract its definition from the RMS-11 macro library.
Section 2.1 shows how to declare macros and symbols.

Declare RMS-11 facilities

To help RMS-11 decide which RMS-11 program modules are needed
for your program, your program must declare some of the RMS-11
operations that it uses. Section 2.2 shows how to declare
RMS-11 facilities.

Declare and use pool space

RMS-11 dynamically allocates and deallocates space for some of
its requirements; this space is separated into five pools.
Using RMS-11 pool-declaration macros, you specify the size of
each pool. Section 2.3 shows how to declare pool space.

Declare and initialize control blocks

Your program and RMS-11 operation routines communicate by
passing data back and forth in control block fields. Using
RMS-11 block-declaration and field-initialization macros, your
program allocates space for control blocks and (optionally)
assigns initial values for fields. Section 2.4 shows how to
declare and initialize control blocks.

Use RMS-11 operations

Your program uses RMS-11 operation routines to perform record
management services; the routines return values that show the
results of the operations. Your program uses RMS-11 operation
macros to call these operation routines. Section 2.5 shows
how to call RMS-11 operation routines and how to handle
returns from the routines.

Your program may also:

Include completion handlers

An RMS-11 operation routine returns either a success
completion code or an error completion code. Your program can
include special routines (called success handlers and error
handlers) that operation routines <call automatically when
operations complete. Section 2.6 shows how to write
completion handlers.

RMS-11 PROGRAMMING

e Use its own get-space routines

RMS-11 uses a routine (called a get-space routine) to allocate
and deallocate space. RMS-11 has a get-space routine, but you
can also supply others of your own. Section 2.7 shows how to
use get-space routines and how to write a get-space routine.

Finally, you must:
e Assemble the program

When you assemble your program, it needs wmacro and symbol
definitions from RMS-11; these are in a macro library, which
your assembler command line must reference. RMS-11 macros
detect some kinds of errors during assembly, and print
messages that identify the errors. Section 2.8 shows how to
assemble your program.

e Build the task
When you build your task, you must do one of the following:
- Use an RMS-11 resident library.

- Define an overlay structure for the task. RMS-11 offers
several overlay definition (ODL) files from which you can
select; you can also write your own ODL files.

- Include RMS-11 code in the task.

2.1 DECLARING RMS-11 MACROS AND SYMBOLS

Before your program refers to an RMS-11 macro or symbol, it must
extract its definition from the RMS-11 macro library.

Your program can use the .MCALL assembler directive to extract the
definition of any RMS-11 macro (but not a symbol) from the macro
library. For example, to extract the definition of the macro $CLOSE,
use the .MCALL directive in the format:

.MCALL S$CLOSE ;Declare RMS-11 S$CLOSE macro

Your program can use RMS-11 macros to extract definitions for RMS-11
symbols, and for some groups of other RMS-11 macros. Appendix C lists
RMS-11 macros (with their arguments) that declare symbols and other
macros.,

2.2 DECLARING RMS-11 FACILITIES

To help RMS-11 decide which RMS-11 program modules your program needs,
your program declares some of the operations that it uses. To do
this, it uses the facilities-declaration macro ORGS in the format:

.MCALL ORGS ;Declare ORGS$ macro
ORGS fileorg][,<operation[,operation]...>]

where fileorg is a keyword indicating a file organization and each
operation 1is a keyword indicating an operation that your program uses
for a file of that organization.

RMS-11 PROGRAMMING

A separate ORGS macro is required for each different file organization
that your program processes, except that no ORGS$ macro is required for
an organization that will be processed using only directory operations
and block access.

The fileorg keyword argument to the ORG$ macro 1is one of the
following:

1DX Indexed file organization
REL Relative file organization
SEQ Sequential file organization

Each operation argument to an ORGS$ macro is one of the following:

CRE CREATE operation
DEL DELETE operation
FIN FIND operation
GET GET operation
PUT PUT operation
UPD UPDATE operation

These are the only operations that your program explicitly declares
with the ORG$ macro; support for other operations 1is handled
automatically.

For example, suppose that your program:

e Creates both sequential and indexed files

e Uses FIND, GET, PUT, and UPDATE operations for sequential
files

e Uses FIND, GET, PUT, and DELETE operations for indexed files

Then the proper ORGS macros are:

ORGS SEQ,<FIN,GET,PUT,UPD> ;Declare FIND, GET, PUT, and UPDATE
; operations for sequential files

ORGS IDX,<FIN,GET,PUT,DEL> ;Declare FIND, GET, PUT, and DELETE
; operations for indexed files

The results of ORGS macros are additive. For example, if one portion
of your program specifies

ORGS SEQ,<GET,PUT>
and another specifies
ORGS SEQ,<GET,UPD>
then the effect is the same as specifying
ORGS SEQ,<GET,PUT,UPD>
Note also that all ORG$ macros must occur in modules that are
contained in the root segment of your task (not overlaid). Use of

ORGS macros is optional in tasks linked with an RMS-11 memory-resident
library.

RMS-11 PROGRAMMING

2.3 DECLARING AND USING POOL SPACE

RMS-11 dynamically allocates and deallocates space for some of its
requirements; this space is separated into five pools:

e Internal FAB and index descriptor block (IFAB/IDB) pool

e Internal RAB (IRAB) pool

e Key buffer pool

e 1/0 buffer pool

e Buffer descriptor block (BDB) pool
RMS-11 has a get-space routine that manages these pools, and that
allocates and deallocates space to meet the needs of RMS-11
operations; however, you can supply other get-space routines and
direct RMS-11 to use a different routine (and, optionally, different
pools) instead of its own.
If you use only the RMS-11 get-space routine, declare pool space using
the pool-declaration macros described below. If you use your own
get-space routine, read Section 2.7; it shows how to write the

routine, and how to manage the pools,

To declare space for pools, use pool-declaration macros in the format:

POOLSB ;Begin pool declarations

PSFAB fabcount ;Space for IFABs in IFAB/IDB pool
PSIDX indexcount ;Space for IDBs in IFAB/IDB pool
PSRAB rabcount ;Space for IRABs for sequential

and relative files and for
block-accessed indexed files
; in IRAB pool
PSRABX rabxcount,keysize,keychanges ;Space for IRABs for
; record-accessed indexed
; files in IRAB pool, and
; space for key buffers in
; key buffer pool
PSBUF bufcount ;Space for 1/0 buffers in I/0
7
H

.
14
.
r

buffer pool
Space for BDBs in BDB pool
End pool declarations

PSBDB bdbcount
POOLSE

If your program uses multiple pool declarations, the results are
cumulative.

The following sections show how to compute the values of arguments to
the pool-declaration macros.

RMS-11 PROGRAMMING

2.3.1 Internal FAB and Index Descriptor Block Pool

Internal FABs (IFABs) and index descriptor blocks (IDBs) are the same
size and so share a pool (the IFAB/IDB pool). The total size of the
pool is the sum of the following:

e The largest number of IFABs that your program uses at the same
time, times 48 bytes. Specify this largest number of IFABs
{not multiplied by 48) as the fabcount argument to the PS$FAB
macro.

A directory operation uses one IFAB, which is returned to the
pool before the operation completes.

A CREATE or OPEN operation uses one IFAB, which 1is committed
while the file is open; a CLOSE operation releases the IFAB.
A DISPLAY or EXTEND operation uses no new IFABs; it uses the
IFAB already committed to the open file, An ERASE operation
uses one IFAB, which 1is released before the operation
completes.

e The largest number of IDBs that your program uses at the same
time, times 48 Dbytes. Specify this largest number of IDBs
{not multiplied by 48) as the indexcount argument to the PSIDX
macro.

Your program uses one IDB for each index of each indexed file
opened for record access (rather than block access). The IDBs
for an indexed file are committed when the file is opened (by
a CREATE or OPEN operation) and are released when the file is
closed (by a CLOSE operation).

2.3.2 Internal RAB Pool

Internal record access blocks (IRABs) have a separate pool. The size
of the IRAB pool is the largest number of streams that your program
will have connected at the same time, times the size of an IRAB (32
bytes) .

Specify the largest number of streams connected to sequential files,
relative files, and block-access indexed files (not multiplied by 32)
as the rabcount argument to the PS$SRAB macro. Specify the largest
number of streams connected to record-access indexed files as the
rabxcount argument to the P$RABX macro.

If the sum of the rabcount and rabxcount arguments is larger than the
largest number of streams that will ever be connected simultaneously,
you may deduct the excess from the rabcount argument that you specify.

An IRAB is committed when a stream is connected and is released when
the stream is disconnected or the file is closed (using the associated
FAB) .

RMS-11 PROGRAMMING

2.3.3 Key Buffer Pool

Key buffers have a separate pool. (These key buffers are different
from those specified by the KBF and KSZ fields of the RAB.)

Each time a stream 1is connected to an indexed file (for record
access), the CONNECT operation requests space from the key buffer
pool; the space is released when the stream is disconnected or the
file is closed.

Compute the size (in bytes) of the request that the CONNECT operation
makes as follows:

1. Begin with the size of the largest key for the file.
2. Multiply by 2.

3. Add the number of alternate keys for the file that are
allowed to change during updating.

4. Add 1.
5. Round up (if necessary) to a multiple of 4.

If your program performs complex sequences of CONNECT and DISCONNECT
(or CLOSE) operations for record-access indexed files with different
key sizes, the key buffer pool may become fragmented (and therefore
contain unusable space). In this case, the total size of the key
buffer pool should be larger than the sum of the requirements for each
connected stream.

Each P$RABX macro that your program uses (in the format PS$SRABX
rabxcount ,keysize,keychanges) allocates a number of bytes for the key
buffer pool that is equal to

(rabxcount) x ((keysize * 2) + keychanges + 1)

The expression ((keysize * 2) + keychanges + 1) 1is rounded up (if
necessary) to a multiple of 4.

You can use PSRABX macros to precisely tailor the size of the key
buffer pool, or to provide extra space against possible fragmentation
problems. A good compromise is to choose the arguments to the PS$SRABX
macro as follows:

e Choose rabxcount as the largest number of streams that will be
connected to record-access indexed files.

e Choose keysize as the largest key in any file that will be
processed.

e Choose keychanges as the maximum number of changeable keys in
any file that will be processed.

2.3.4 1/0 Buffer Pool

The I/0 buffers for RMS-11 operations come either from the central
buffer pool or from a private buffer pool. (These are RMS-11 internal
I/0 buffers, and are different from the I/0 buffers specified 1in the
RBF, RSZ, UBF, and USZ fields of the RAB.)

RMS-11 PROGRAMMING

Your program can specify a private buffer pool for a directory or file
operation (except CLOSE, DISPLAY, or EXTEND). If your program does
not specify a private buffer pool, these operations use the central
buffer pool.

All other operations that require I/0 buffers use the same pool as the
CREATE or OPEN operation that opened the file.

The minimum size of the central 1/0 buffer pool 1is the sum of the
sizes of the I/0 buffers that your program will need from it at the
same time (ignoring I/0 buffers supplied from private buffer pools).
Specify the size (in bytes) of the central buffer pool as the
iopoolsize argument to the P$BUF macro.

Specify the size (in bytes) of a private buffer pool for an operation
in the 1l-word BPS field of the FAB and the address in the l-word BPA
field of the FAB. 1If your program specifies a private buffer pool for
a CREATE or OPEN operation, the entire pool is reserved for and
managed by that file until the file is closed.

Your program needs space from buffer pools for the following:

® One 512-byte I/0 buffer for any directory or file operation
(except CLOSE, DISPLAY, or EXTEND). This space is released
before the operation completes.

e One 512-byte I/0 buffer for a DISPLAY or EXTEND operation for
a record-access relative or indexed file; the space is
returned when the operation completes.

e 1/0 buffers for a CONNECT operation:

- One I/0 buffer for a record-access stream connected to a
sequential disk file., The I/0 buffer uses 512 bytes times
the multiblock count for the stream.

- One I/0 buffer for a record-access stream connected to a
sequential magtape file. = The number of bytes in the I/O
buffer is the block size for the file, rounded up (if
necessary) to a multiple of 4 bytes.

- One I/0 buffer for a record-access stream connected to a
file on a unit-record device. The number of bytes in the
I/0 buffer is equal to the default block size for the
device, rounded up (if necessary) to a multiple of 4 bytes.

- One or more 1I/0 buffers for a stream connected to a
relative file. Each I/0 buffer uses 512 bytes times the
bucket size for the file. If you use the multibuffer count
to specify additional buffers, the requirement increases
accordingly.

- Two or more I/O buffers for a stream connected to an
indexed file. Each I/0 buffer uses 512 bytes times the
bucket size for the file. If you use the multibuffer count
to specify additional buffers, the requirement increases
accordingly.

I/0 buffers for a connected stream are retained until the
stream is disconnected by a DISCONNECT or CLOSE operation,

RMS-11 PROGRAMMING

If your program uses the I1/0 buffer pool for complex sequences of
operations that wuse I/0 buffers for different files, the pool may
become fragmented. In that case, you may want to either allocate
extra space in the I/0 buffer pool, or limit fragmentation through the
judicious use of private buffer pools.

2.3.5 Buffer Descriptor Block Pool

Your program requires one 20-byte buffer descriptor Dblock (BDB) for
each I/0 buffer (whether from the central or a private pool) that it
uses at the same time; these BDBs are allocated and returned at the
same time as their associated I/0 buffers. (I/0 buffer requirements
are described in the previous section.)

In addition, a block-access stream (for any file) or a record-access
stream that will write to a relative file requires an additional BDB;
a record-access stream that will write to an indexed file requires two
additional BDBs. These BDBs are returned when the stream is
disconnected (or the file is closed).

An EXTEND operation for a record-access relative or indexed file also
requires an additional BDB, which 1is returned when the operation
completes.

Therefore the size of the BDB pool is the 1largest number of BDBs
required at any one time, times 20 bytes. Specify this largest number
of BDBs (not multiplied by 20) as the bdbcount argument to the P$BDB
macro.

2.4 DECLARING AND INITIALIZING CONTROL BLOCKS

Your program and RMS-11 operation routines communicate by passing data
back and forth in control block fields. Using RMS-11
block-declaration and field-initialization macros, you allocate space
for control blocks and (optionally) assign initial values for fields.

To declare a control block and initialize its fields, use
block-declaration and field-initialization macros as follows:

1. Make sure the control block is word-aligned by using the
.EVEN directive:

.EVEN ;Word-align block

2, Specify a label so that your program can refer symbolically
to the address of the control block.

label:

3. Begin the block declaration with one of the following macros:

FABSB ;Begin FAB declaration
NAMSB ;Begin NAM block declaration
RABSB SYN ;Begin RAB declaration for

; synchronous RAB
RABSB ASYN ;Begin RAB declaration for

; asynchronous RAB
XABSB XBSALL ;Begin ALL block declaration
XABSB XBSDAT ;Begin DAT block declaration
XABSB XBSKEY ;Begin KEY block declaration
XABS$B XBSPRO ;Begin PRO block declaration
XABSB XB$SSUM ;Begin SUM block declaration

2-8

RMS-11 PROGRAMMING

4, Initialize (optionally) fields with field-initialization
macros of one of the forms:

Fsfld arg ;Initialize FAB field
N$fld arg ;Initialize NAM block field
R$fld arg ;Initialize RAB field
Xsfld arg ;Initialize XAB field

In each of these forms, fld is the mnemonic for a field 1in
the control block; arg is an argument suitable for the value
of the field. Chapter 6 describes field-initialization
macros and their arguments.

5. End the block declaration with one of the following macros:

FABSE ;End FAB declaration
NAMSE :End NAM block declaration
RABSE ;End RAB declaration
XABSE ;End XAB declaration

2.5 USING RMS-11 OPERATIONS

Your program uses RMS-11] operation routines to perform record
management services. Using RMS-11 operation macros, you call these
operation routines. The routines return values in control block
fields that show the results of the operations.

To use RMS-11 operation routines, your program must:
® Set up control block fields

The values that your program places in control block fields
specify the details of the service you want from the RMS-11
operation routine. Section 2.5.1 shows how to set up control
block fields.

e Chain control blocks

Some RMS-11 operation routines (stream, record, and block
operation routines) read only RAB fields; others (directory
and file operation routines) read FAB fields and, if vyour
program supplies them, fields in NAM blocks and XABs. Your
program chains these blocks (using address pointers) so that
the operation routine can find them. Section 2.5.2 shows how
to chain control blocks.

e Call operation routines

You use RMS-11 operation macros to call RMS-11 operation
routines. Section 2.5.3 shows how to call operation routines.

e Handle returns

Section 2.5.4 shows how to handle returns from operation
routines.

e Examine returned values

When an RMS-11 operation routine completes its execution, it
has placed values 1in control block fields that show the
results of the operation. Your program should examine these
values to determine the results. Section 2.5.5 shows how to
examine returned values.

RMS-11 PROGRAMMING

2.5.1 Setting Up Control Block Fields

The values that your program places into control block fields specify
the details of the service you want from the RMS-11 operation routine.
The description of each operation macro in Chapter 5 discusses the
control block fields that are read by that operation.

Three RMS-11 field-access macros help ydu place values into control
block fields:

® S$SSTORE places a specified value into a field.
® SSET sets bits in a field.

® SOFF clears bits in a field.

2.5.1.1 S$STORE Macro - Use the S$STORE macro to copy a value from a
specified 1location to a control block field. The format for the
$STORE macro is:

SSTORE src,fld,reg

where src is a an address in memory; £fld is a field mnemonic; and
reg 1is a general purpose register (RO through R5) containing the
address of the control block.

The $STORE macro looks up the size of the destination field, so that
it can copy the correct number of bytes or words. If the source is a
register and the destination is a l-byte field, then the low byte of
the register 1is copied; if the source 1is a register and the
destination is a multiword field, then the contents of the specified
register and following registers are copied.

The $STORE macro generates an error during assembly if you wuse an
illegal address mode for the source. For multiword fields, illegal
address modes are autoincrement deferred, autodecrement deferred, and
indexed deferred.

It is also illegal to specify the program counter (PC) as the source
or to specify a register as source in such a way that the source
overlaps the register that contains the control block address.

At execution time, the $STORE macro copies the contents of the
specified location to the control block field. The number of bytes or
words copied is the same as the field size for the mnemonic. Chapter
6 gives the size of each control block field.

For example, suppose that you want to specify indexed file
organization in the FAB for a file, and suppose that the address of
that FAB is stored in register R2. Then the proper macro is:

SSTORE #FBSIDX,0RG,R2 ;Indexed file organization

Suppose that you want to chain a NAM block whose label is NAMBLK to
the same FAB. Then the proper macro is:

$STORE #NAMBLK,NAM,R2 ;Chain NAM block

RMS-11 PROGRAMMING

Suppose that you want to set the allocation quantity (ALQ field) of
the same FAB to the value stored in a location labeled ALQVAL. Then
the proper macro is:

SSTORE ALQVAL,ALQ,R2 ;Load allocation quantity

and (because ALQ is a 2-word field) two words are copied from ALQVAL
to the ALQ field.

2.5.1.2 $SET Macro - Use the $SET macro to set bits in a 1l-byte or
l-word control block field. The $SET macro logically ORs a given mask
into the control block field. Therefore for each bit set in the mask,
the S$SET macro sets the corresponding bit in the field; the other
bits are not changed. N

Note that you use the $SET macro only if you want to leave some bits
in a field undisturbed; if you want to set specified bits and clear
all others, use the $STORE macro.

The format for the S$SET macro is:
SSET mask,fld,reg

where mask is an address in memory containing bits to be set; fld is
the mnemonic for a control block field; and reg is a general purpose
register (RO through R5) containing the address of the control block.

If the field is not a l-byte or l-word field, the $SET macro generates
an error during assembly.

RMS-11 has symbols for masks for each bit-oriented control block
field. Therefore your program can use these symbols instead of
numerical values,

For example, supposq you want to specify rewind-on-close 1in the FAB
for a file, but do not want to disturb other bits in the FOP field of
the FAB; suppose also that the address of the FAB is in register R2.
Then the proper macro is:

SSET #FBSRWC,FOP,R2 ;Rewind-on-close

As another example, suppose you want to specify key-duplicates-allowed
and key-changes-allowed for an index, but do not want to disturb other
bits in the FLG field of the KEY block; suppose also that the address
of the KEY block is in register R4. Then the proper macro is:

SSET #XBSDUP!XBSCHG,FLG,R4 ;Allow key duplicates and changes

2.5.1.3 S$OFF Macro - Use the $OFF macro to clear bits in a l-byte or
l-word control block field. The $OFF macro logically ANDs the 1's
complement of a given mask into the control block field. Therefore
for each bit set in the mask, it clears the corresponding bit in the
field; the other bits are not changed.

Note that you use the $OFF macro only if you want to leave some bits
in a field undisturbed; if you want to clear the entire field, use
the $STORE macro (with a source value of #0).

RMS-11 PROGRAMMING

The format for the SOFF macro is:
SOFF mask,fld,reg

where mask is an address in memory containing bits to be cleared; f£fld
is the mnemonic for a control block field; and reg is a general
purpose register (RO through R5) containing the address of the control
block.

If the field is not a l-byte or l-word field, the $SOFF macro generates
an error during assembly.

RMS--11 has symbols for masks for each bit-oriented control Dblock
field. Therefore your program can use these symbols instead of
numerical values.

For example, suppose you want to specify no-rewind-on-close in the FAB
for a file, but do not want to disturb other bits in the FOP field of
the FAB; suppose also that the address of the FAB is in register R2.
Then the proper macro is:

SOFF #FBSRWC,FOP,R2 ;No rewind-on-close

As another example, suppose you want to specify
no-key-duplicates-allowed and no-key-changes-allowed for an index, but
do not want to disturb other bits in the FLG field of the KEY block;
suppose also that the address of the KEY block is in register R4.
Then the proper macro is:

SOFF #XBSDUP!XBSCHG,FLG,R4 ;No key duplicates or changes

2.5.2 Chaining Control Blocks

An FEMS-11 directory operation or file operation uses at least one FAB;
you specify FABs in the operation macros that call the operation
routines.

For some directory operations, a NAM block 1is required; it is
optional for other directory operations and for file operations. You
specify a NAM block and XABs for an operation by chaining them to the
FAB for the operation.

2.5.2.1 Chaining a NAM Block to a FAB - Specify the NAM block
associated with a FAB by placing its address in the 1l-word NAM field
of the FAB.

2,5.2.2 Chaining XABs to a FAB -~ Specify the XABs associated with a
FAB by placing the address of the first XAB in the l-word XAB field of
the FAB; 1in each XAB, specify the address of the next XAB in the
chain in the 1-word NXT field of the XAB; 1in the last XAB in the
chain, specify 0 in the NXT field.

Follow these rules in ordering XABs in a chain:

e Place ALL blocks together in the chain. Each ALL block is
"numbered" by the wvalue in the l-byte AID field of the ALL

block; chain ALL blocks so that these numbers are in
ascending order. For the CREATE operation, begin with 0 and
do not skip numbers in the ascending sequence; for other

operations, you can skip numbers in the sequence.

2-12

RMS-11 PROGRAMMING

@ Place no more than one DAT block in the chain.

e Place KEY blocks together in the chain. Each KEY block is
"numbered" by the value 1in the l-byte REF field of the KEY

block; chain KEY blocks so that these numbers are in
ascending order. For the CREATE operation, begin with 0 and
do not skip numbers in the ascending sequence; for other

operations, you can skip numbers in the sequence.
e Place no more than one PRO block in the chain.

e Place no more than one SUM block in the chain.

2.5.2.3 Chaining a FAB to a RAB (CONNECT Operation) - The CONNECT
operation creates a stream for a file., A FAB specifies the file; a
RAB specifies the stream. Specify the address of the FAB for the file
in the l-word FAB field of the RAB for the stream.

2.5.3 Calling Operation Routines

Use RMS-11 operation macros to call operation routines. You can
specify arguments for the operation routine either by giving them as
arguments to the operation macro, or by placing them in an argument
block in memory.

2.5.3.1 Call with Macro Arguments - Call an operation routine (except
RENAME) using an operation macro with arguments in the format:

Smacroname blkaddr [, [erraddr] [,sucaddr]]

where $macroname is the name of an operation macro (except $RENAME) ;
blkaddr is the address of a FAB (for a directory or file operation) or
a RAB (for a stream, record, or Dblock operation); erraddr is the
address of an error handler for the operation; and sucaddr is the
address of a success handler for the operation.

For example, if you want to open a file using a FAB at address INFAB
and want to wuse a success handler at address SUCCES, the macro call
would be:

SOPEN #INFAB,,#SUCCES

Call the RENAME operation wusing the SRENAME operation macro with
arguments in the format:

SRENAME oldfabaddr, [erraddr], [sucaddr] ,newfabaddr

where oldfabaddr 1is the address of a FAB for the old file
specification; erraddr 1is the address of an error handler for the
operation; sucaddr is the address of a success handler for the
operation; and newfabaddr 1is the address of a FAB for the new file
specification.

RMS-11 PROGRAMMING

2.5.3.2 Call with Arguments in Memory - To call an operation routine
using an operation macro with arguments 1in an argument block in
memory, omit the arguments to the macro, store the address of the
argument block in register R5, and store the argument block in memory
as follows:

1 0 ARGUMENT COUNT 0
ADDRESS OF FAB OR RAB 2

ADDRESS OF ERROR HANDLER (OPTIONAL) 4
ADDRESS OF SUCCESS HANDLER (OPTIONAL) 6
ADDRESS OF NEW FAB (RENAME ONLY) 10

ZK-1097-82

The argument count is 4 for a RENAME operation; otherwise it 1is one
of the following:

e 1 - no completion handlers
@ 2 - error handler, but no success handler
® 3 - success handler

If the operation has no error handler, but either has a success
handler or the operation is RENAME, specify -1 as the address of the
error handler; 1if the operation has no success handler, but the
operation is RENAME, specify -1 as the address of the success handler.

2.5.4 Handling Returns

An RMS-11 file or directory operation returns a completion status code
in the 1-word STS field of the FAB and, for some completions, a
completion status value in the l-word STV field of the FAB.

An RMS-11 stream, record, or block operation returns a completion
status code in the 1l-word STS field of the RAB and, for some
completions, a completion status value in the l-word STV field of the
RAB.

Appendix A lists completion codes.

Your program should examine the STS field contents to determine
whether the operation was successful; even if the operation returned
an error completion, your program may be able to handle the error and
recover.

The program can handle the return (based on the completion code)
either in the code that immediately follows the operation macro, or in
special routines (called completion handlers) that the operation can
call. Section 2.6 shows how to write completion handlers.

RMS-~11 PROGRAMMING

There are two kinds of fatal RMS-1ll errors:

e If the FAB or RAB address you specify is not the address of a
valid and 1idle FAB or RAB, or if the argument block you
provide is invalid, RMS-11 cannot return values, even in the
sTS field. RMS-11 issues a BPT instruction, leaving status
information in the following registers:

RO: RMS-11 fatal error code

R1: Stack pointer (at time of entry to RMS-11l routine)
R2: Program counter (entry return same as @R1)

R3: Address of system impure area

e If RMS-11 detects the corruption of memory-resident data
structures, or if it detects inconsistent internal states, it
cannot proceed with its operations. 1In these cases, RMS-11
halts execution with a BPT instruction; if it can identify
the error, RMS-11 leaves an error completion in RO.

Appendix A lists the symbols and values for RMS-11 fatal error codes.

2.5.5 Examining Returned Values

When an RMS-11 operation routine completes 1its execution, it has
placed values in control Dblock fields that show the results of the
operation. Your program should examine these values to determine the
results. The description of each operation macro 1in Chapter 6
discusses the control block fields that return values for that
operation.

Three RMS-11 field-access macros help you examine values in control
block fields:

® SFETCH copies a value from a field to a specified location.
e SCOMPARE compares a field value to a specified value.

® STESTBITS determines whether specified bits in a field are
set.

2.5.5.1 SFETCH Macro - Use the SFETCH macro to copy a value from a
control Dblock field to a specified 1location. The format for the
SFETCH macro is:

SFETCH dst,fld,reg

where dst is an address in memory; £f1d is the mnemonic for a control
block field; and reg is a general purpose register (RO through R5)
containing the address of the control block.

The SFETCH macro looks up the size of the source field, so that it can
copy the correct number of bytes or words. 1If the destination is a
register and the source is a l-byte field, then the byte is copied to
the 1low byte of the register and the high byte is cleared. 1if the
destination is a register and the source is a multiword field, then
the multiword field is copied to the specified register and following
registers.

RMS-11 PROGRAMMING

The S$FETCH macro generates an error during assembly if you wuse an
illegal address mode for the destination. For multiword fields,
illegal address modes are autoincrement deferred, autodecrement
deferred, and indexed deferred. Immediate mode is illegal for S$FETCH,
regardless of field size.

It is also illegal to use the program counter (PC) as the destination
or to specify a register for the destination in such a way that the
destination overlaps the register that contains the control block
address.

At execution time, the SFETCH macro copies the contents of the control
block field to the specified location. The number of bytes or words
copied is the same as the field size for the mnemonic. Chapter 6
gives the size of each control block field.

As an example of the use of the S$SFETCH macro, suppose that you want to
fetch the allocation quantity (ALQ field) from a FAB to a location
labeled ALQSAV, and suppose also that the address of the FAB is in
register R3. Then the proper macro is:

SFETCH ALQSAV,ALQ,R3 ;Save allocation quantity

and two words are copied from the ALQ field to memory beginning at
ALQSAV.

2.5.5.2 SCOMPARE Macro - Use the SCOMPARE macro to compare the
contents of a 1l-byte or l-word control block field with a specified
value. The format for the $SCOMPARE macro is:

$COMPARE src,fld,regq
where src is an address in memory; £f14 is the mnemonic for a control
block field; and reg is a general purpose register (RO through R5)
containing the address of the control block.

If the given field is not a l-byte or l-word field, the S$COMPARE macro
generates an error during assembly.

At execution time, the SCOMPARE macro executes a machine instruction
that compares the source value and the field contents. The
instruction executed depends on the size of the specified field and on
the specified source:

e TSTB for a l-byte field and the source #0

e TST for a l-word field and the source #0

e CMPB for a l-byte field and a source other than #0

e CMP for a l1l-word field and a source other than #0
Chapter 6 gives the size of each control block field.
For example, suppose that you want to compare the value 1in the RS2
field of a RAB with a value stored in a location labeled RSZSAV, and
suppose also that the address of the RAB is stored 1in register R2.

Then the proper macro is:

SCOMPARE RSZSAV,RSZ,R2 ;Compare record size

RMS-11 PROGRAMMING

Suppose that you want to compare the same RSZ field to the value of a
symbol, RECSIZ. Then the proper macro is:

SCOMPARE #RECSIZ,RSZ,R2 ;Compare record size

2.5.5.3 STESTBITS Macro - Use the STESTBITS macro to test the wvalues
of bits in a l-byte or l-word control block field. Chapter 6 gives
the size of each control block field. The format for the S$STESTBITS
macro is:

STESTBITS mask,fld,reg

where mask is an address in memory containing bits to be tested; f1d
is the mnemonic for a control block field; and reg is a general
purpose register (RO through R5) containing the address of the control
block.

If the given field is not a l-byte or 1l-word field, the S$TESTBITS
macro generates an error during assembly.

At execution time, the STESTBITS macro executes a machine instruction
that tests the bits specified in the mask. The instruction executed
depends on the size of the specified field:

e BITB for a l-byte field
e BIT for a l-word field

For example, suppose you want to determine whether the terminal device
is set in the DEV field of a FAB, and suppose that the address of the
FAB is in register R3 Then the proper macro is:

STESTBITS #FBSTRM,DEV,R3 ; Terminal device?

As another example, suppose that you want to determine whether either
the contiguous-area or the hard-location bit is set in the AOP field
of an ALL block, and suppose that the address of the ALL block 1is in
register R2. Then the proper macro is:

STESTBITS #XBSCTG!XB$SHRD,AOP,R2 ;Contiguous or hard location?

2.6 WRITING COMPLETION HANDLERS

Recall that when you use an RMS-11 operation macro, you can specify
the addresses of completion handlers for the operation; 1if you do so,
the operation automatically calls the error handler (for a nonfatal
error completion) or the success handler (for a success completion)
when the operation completes, before control returns to your program.

When execution control passes to your completion handler, it finds the
following situation:

® Register R5 contains the address of the argument block for the
operation.

If the operation is asynchronous, the address is the address
of a copy of the original argument block for the operation.

e The second word of the argument block contains the address of
the FAB or RAB for the operation. (Recall that the STS and
STV fields of the FAB or RAB contain the completion code and
completion value for the operation.)

2-17

RMS-11 PROGRAMMING

e If the operation was RENAME, the fifth word of the argument
block contains the address of a second FAB for the operation.

e Other blocks are chained as they were when you used the
operation macro that called the operation routine,.

A completion handler cannot determine from these values which RMS-11
operation was executed, or what part of your program called the
operation routine. You can, however, use the l-word CTX field of the
FAB or the 1l-word CTX field of the RAB to indicate the context of the
operation; RMS-11 does not disturb values in CTX fields.

The completion handler must preserve the stack pointer (SP), and must
end with the RMS-11 completion-return macro in the format:

SRETURN ;End of completion handler

2.7 USING GET-SPACE ROUTINES

Your program can provide and use get-space routines other than the one
provided with RMS-11. It can set an initial get-space routine at
assembly time, and it can change to other routines during program
execution. Section 2.7.1 shows how to specify get-space routines, and
how to obtain the address of the current get-space routine. Section
2.7.2 shows how to write a get-space routine.

2.7.1 Specifying Get-Space Routines

To specify a get-space routine at assembly time, use the GSA$ macro in
the format:

GSAS address ;Initialize get-space routine
; address

where address is the get-space routine entry address. If you specify
0 as the address, or if you do not use the GSA$ macro, the initial
get-space routine for the program is the RMS-11 routine.

For example, to specify a routine that begins at the label MYSPAC, you
would use:

GSAS MYSPAC

To change the get-space routine during program execution, use the
SSETGSA macro in the format:

SSETGSA pointer ;Change get-space routine
where pointer is the address of a location that contains the get-space
routine entry address. If you specify the entry-point address as 0,

the new get-space routine established is the RMS-11 routine.

For example, to specify a routine that begins at the label NEWSPC, you
could use:

$SETGSA #NEWSPC

Alternatively, if the location GSATMP contains the value NEWSPC, you
could use:

SSETGSA GSATMP

RMS-11 PROGRAMMING

To obtain the address (in R0O) of the current get-space routine during
program execution, use the $GETGSA macro in the format:

SGETGSA ;Get-space routine address into RO

If the address returned in RO is 0, the current get-space routine is
the RMS-11 routine.

2.7.2 Writing a Get-Space Routine

A get-space routine handles space in contiguous blocks. For a request
for space, it allocates a contiguous block of space (or denies the
request); for a release of space, it accepts a contiguous block of
space.

A get-space routine must have a proper interface to calling routines,
and it should handle unallocated space properly.

2.7.2.1 Get-Space Routine Interface - When RMS-11 calls a get-space
routine, it either requests or releases a block of space. For a
request for space, registers RO through R2 contain the following
values:

RO Address of pool free-space list (see next section)
R1 Size (in bytes) of requested block
R2 0

If the get-space routine fills the request, it must clear the C bit
and return the address of the first word of the allocated block in RO;
if it does not fill the request, it must set the C bit, In either
case, the routine must preserve the stack and registers R3 through R6.

For a release of a block of space, registers RO through R2 contain the
following values:

RO Address of pool free-space list (see next section)
R1 Size (in bytes) of released block
R2 Address of first word being released

For a release-space operation, the get-space routine returns no
values; however, it must preserve the stack and registers R3 through
R6.

2.7.2.2 Pool Free-Space Lists - When RMS-11 calls your get-space
routine, the address of a pool free-space list is in register RO.
This free-space list specifies free space in one of the five pools
described in Section 2.3; you can use this pool (which may or may not
have adequate free space), or you can use a pool of your own.

The free-space list chains free contiguous blocks of the pool. The
first word of each block contains the address of the next block; if
the first word of a block is 0, it is the last block in the list.

Blocks in the list are ordered by ascending virtual addresses; their
addresses are word-aligned; their sizes are multiples of 4 bytes
(allocations and deallocations must be rounded up to a multiple of 4,
if necessary).

RMS-11 PROGRAMMING

The second word of each block contains the size (in bytes) of the
block, 1including the 4-byte header; the first "block"™ in the list
contains 0 in its second word, since it is the header block for the
list.

Your get-space routine can use the specified pool list to get space
for RMS-11; 1if it does this, it must properly maintain the list, and
must (if possible) merge blocks back into the pool.

The system routines SRQCB and S$RLCB are suitable for handling pool
free-space 1lists. These routines have interfaces that meet the
requirements for your get-space routine; therefore your program can
jump to SRQCB (for a space request) or SRLCB (for a space release).

2.8 ASSEMBLING THE PROGRAM

When you assemble your program, you must cause the assembler to get
RMS5-11 macro and symbol definitions from a library, and you may have
to correct errors indicated by messages from RMS-11 macros.

2.8.1 Assembling with the RMSMAC Macro Library

When you assemble your program, the assembler needs definitions for
the RMS-11 macros and symbols that your program uses; these are in
the RMS-11 macro library, RMSMAC.MLB. Include the following reference
to the RMS-11 macro library in your assembler command string:

LB:[1,1]RMSMAC.MLB/ML

2,8.2 Assembly-Time Errors from RMS-11 Macros

RMS-11 macros detect some errors during assembly. For each such
error, a macro issues a .PRINT or .ERROR assembler directive with a
message. Appendix B describes RMS-11 macro-generated messages and
their meanings.

CHAPTER 3

PROCESSING DIRECTORIES AND FILES

This chapter discusses use of RMS-11l directory and file operations.
The next sections discuss information and usage common to several
directory and file operations:

e Device characteristics

e Logical channels

e File specifications and identifiers

e Private buffer pools

e Completion status

The sections after those provide an overview of the operations
themselves (see Chapter 5 for detailed discussions):

® Directory operations (except SEARCH): ENTER, REMOVE, RENAME
and PARSE

e File operations: CREATE, OPEN, DISPLAY, ERASE, EXTEND, and
CLOSE

Finally, the last sections discuss:
e SEARCH operation

® Writing wildcard loops

3.1 DEVICE CHARACTERISTICS

A directory or file operation (except CLOSE, DISPLAY, or EXTEND)
returns device characteristics. These characteristics are returned as
masks in the l-byte DEV field of the FAB. The device characteristics
are:

e Printer or terminal (indicated by the set FBSCCL mask in the
l-byte DEV field of the FAB and the set FBSREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask
in the 1l-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

PROCESSING DIRECTORIES AND FILES

e Unit-record device (indicated by the set FBSREC mask in the
l-byte DEV field of the FAB).

e Non-ANSI magtape or cassette tape (indicated by the set FBS$SDI
mask in the 1l-byte DEV field of the FAB and the set FBS$REC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

® ANSI-format magtape (indicated by the set FBS$SQD mask in the
l-byte DEV field of the FAB).

3.2 LOGICAL CHANNELS

An RMS-11 directory or file operation (except CLOSE, DISPLAY, or
EXTEND) requires a logical channel; this channel is a path from the
program to a specified device.

When your program executes a CREATE or OPEN operation on the channel,
the path 1is extended to the target file; wuntil the file is closed,
the channel is reserved for the specified FAB.

Your program specifies the logical channel for a directory operation
or for a CREATE, ERASE, or OPEN operation in the 1l-byte LCH field of
the FAB; the channel must not already be in use by the task.

You can specify the initial device assignment for a logical channel in
a Task Builder command file. The Task Builder also provides default
initial device assignments for certain channels. Other logical
channels are unassigned when your task begins executing.

During task execution, channel assignments are made or changed by use
of the ALUN$S system directive. For example, RMS-11 uses the ALUNS
directive to assign a logical channel for a directory operation or for
a CREATE, ERASE, or OPEN operation; if the FAB and NAM block specify
a device or device identifier, RMS-11 assigns the channel to that
device; if the FAB and NAM block do not specify a device or device
identifier, RMS-11 retains the device-channel assignment (if any), or
assigns the channel to the device SY:.

3.3 FILE SPECIFICATIONS AND IDENTIFIERS

A file specification consists of the following elements (in the order
given):

e Device specification - the device where the file resides

@ Directory specification - the directory on the device through
which the file can be found

e File name - the name by which the file is known in the
directory

e File type - the type by which the file 1is known in the
directory

@ File version - the version number by which the file 1is known
in the directory

PROCESSING DIRECTORIES AND FILES

RMS-11 operations construct and use file specification strings and
file identifiers to specify files. These strings and identifiers
include:

® User-provided file specification strings
e Expanded file specification strings

e Resultant file specification strings

e File, directory, and device identifiers

This section discusses these strings and identifiers as they are used
for nonwildcard operations; wildcard use is described in Section 3.8.

For a CREATE, ENTER, ERASE, OPEN, PARSE, REMOVE, or RENAME operation,
your program specifies two strings to be used in generating a full
file specification:

e A file specification string, called the file string (your
program specifies the address of the file string in the l-word
FNA field of the FAB and the 1length of the string 1in the
l-byte FNS field of the FAB)

e A default file specification string, called the default string
(your program specifies the address of the default string in
the l-word DNA field of the FAB and the length of the string
in the l-byte DNS field of the FAB)

The operation routine uses these two strings to form an internal
merged file specification string, called the merged string. The
operation initially forms the merged string as follows:

e It begins by taking available elements from the file string.

e It then supplies missing elements from the default string (if
they are available there). The operation (when it completes)
returns masks describing the results of this merge in the
l-word FNB field of the NAM block (if you supplied a NAM block
for the operation).

If elements are still missing from the merged string, the operation
next adds the following elements:

e Device - If the logical channel specified in the LCH field of
the FAB is already assigned to a device, that device is used;
otherwise the device SY: 1is used.

® Directory - The task's current directory is used.
e File name, type, and version - Nulls are used.

If the operation 1is the PARSE operation, the merged string is
complete. If you provided a NAM block, the PARSE operation returns
the device identifier in the 2-word DVI field of the NAM block; if
you provided an expanded string buffer, the PARSE operation returns
the expanded string in the expanded string buffer (whose address is in
the 1l-word ESA field of the NAM block). (Note that the device
specification in an expanded string has usually been translated to the
specification for a physical device.)

PROCESSING DIRECTORIES AND FILES

An operation other than PARSE continues by examining the FBSFID mask
in the FOP field of the FAB. If the FBSFID mask is set, the operation
adds the following elements:

® Device - If a device identifier is given in the NAM block,
that device overrides the device in the merged string and the
device specification is deleted from the merged string.

® Directory - If a directory identifier 1is given in the NAM
block, that directory overrides the directory in the merged
string and the directory specification 1is deleted from the
merged string.

e File identifier - If a file identifier is given in the NAM
block and if the operation 1is ERASE or OPEN, that file
overrides the directory, file name, type, and version in the
merged string and the specifications for those elements are
deleted from the merged string.

The merged string is then copied to the expanded string buffer (if you
supplied one) as described for the PARSE operation above. The merged
string plus applicable identifiers are called the fully qualified file
specification, and define the file upon which the operation will be
performed.

The device, directory, and file identifiers for the file are returned
in the NAM block (if you supplied one). These identifiers can be used
as 1input to subsequent directory and file operations to speed
processing by eliminating directory and file lookups.

Note that a complete file specification is relevant only to a disk
file. The directory specification is not relevant for ANSI magtape
files; only the device specification is relevant for a file on a
unit-record device. Irrelevant elements are not processed, and appear
in the expanded string only if your program provides them in the file
string or default string.

NOTE: NULL, 0, OR -1 VERSION NUMBER

If the version specification has not
been deleted and is null, 0, or -1, it
will later be replaced with the version
number of the target file.

A version number of -1 identifies the
target file as the (otherwise) specified
file with the lowest version number; a
version number of -1 is illegal for a

CREATE or ENTER operation, or for the
new file specification for a RENAME
operation.

For an ERASE, OPEN, REMOVE, or RENAME
(old specification) operation, a null or
0 version number specifies the target
file as the (otherwise) specified file
with the highest version number.

For a CREATE, ENTER, or RENAME (new
specification) operation, a null or 0
version number specifies that the
operation is to create a new entry whose
version number is one greater than the
highest-numbered version of the
(otherwise) specified file.

3-4

PROCESSING DIRECTORIES AND FILES

3.4 PRIVATE BUFFER POOLS

Many RMS-11 operations require space from a buffer pool. A directory
or file operation (except CLOSE, DISPLAY, or EXTEND) allows your
program to specify a private buffer pool. Your program specifies the
address of the pool in the 1-word BPA field of the FAB; it specifies
the size (in bytes) of the pool in the l-word BPS field of the FAB.

The CLOSE operation returns (in the BPA and BPS fields) the address
and size of the private buffer pool (if any) specified for the CREATE
or OPEN operation that opened the file; until the file is closed, the
pool 1is dedicated to the open file and must not be used for other
purposes.

If your program does not specify a private buffer pool, the operation
uses the central buffer pool (which your program declares using
pool-declaration macros); if your program specifies a private buffer
pool, the operation uses that pool.

The CLOSE, DISPLAY, and EXTEND operations, and all stream, record, and

block operations use the pool specified by the CREATE or OPEN
operation that opened the file.

3.5 COMPLETION STATUS
A directory or file operation returns a completion status code in the

l-word STS field of the FAB, and a completion status value in the
l-word STV field of the FAB.

3.6 DIRECTORY OPERATIONS

RMS-11 directory operations affect only directory entries (not the
contents of files). The directory operations are:

e ENTER: create a directory entry

e REMOVE: delete a directory entry

e RENAME: replace a directory entry

e PARSE: analyze a file specification
e SEARCH: search directories

The next sections provide an overview of the directory operations
(except for the SEARCH operation, which is discussed in Section 3.8).

3.6.1 ENTER Operation

A file specified as temporary when it was created has no directory
entry; a file also has no directory entry if the entry has been
deleted by the REMOVE operation.

Your program can use the ENTER operation to create a directory entry
for a file; this makes it ©possible for your program (and other
programs) to specify the file to RMS-11 by its file specification.

The ENTER operation uses the device and directory elements of the

fully qgualified file specification to determine the target directory;
it then creates an entry in that directory using the file name, type,

3-5

PROCESSING DIRECTORIES AND FILES

and version elements of the fully qualified file specification, and
the file identifier specified in the NAM block.

3.6.2 REMOVE Operation

Your program can delete the directory entry for a file by wusing the
REMOVE operation; this does not affect either the existence of the
file or the file contents, but only removes the path to the file.

The device and directory elements of the fully qualified file
specification specify the target directory; the file name, type, and
version elements of the fully qualified file specification identify
the entry to be removed from the directory.

3.6.3 RENAME Operation

Your program can replace the directory entry for a file by wusing the
RENAME operation. The fully qualified file specification for the new
directory entry must not specify a new device for the file, but
otherwise it can specify elements different from the old file
specification: directory, file name, file extension, and file version
number.

If you do not specify a device, the device associated with the old
file specification is used.

For both the old and new directory entries, the RENAME operation uses
the device and directory elements of the fully qualified file
specification to determine the target directory; it uses the file
name, type, and version elements of the fully qualified file
specification to identify the entry to be removed or created.

3.6.4 PARSE Operation
Your program can use the PARSE operation to analyze a file
specification, or to prepare for a series of wildcard operations

(described in Section 3.8). The results of the PARSE operation are
described in detail in Section 3.3.

3.7 FILE OPERATIONS

RMS-11 file operations affect files as whole entities (but not
individual records or blocks in files). The file operations are:

e CREATE: create a file (and a corresponding directory entry)
and open the file for processing

e OPEN: open an existing file for processing
e DISPLAY: write file information to control blocks

® ERASE: delete file contents (records or Dblocks) and remove
directory entry

PROCESSING DIRECTORIES AND FILES

e EXTEND: increase the allocation for a file
e CLOSE: close an open file

The next sections discuss file operations.

3.7.1 CREATE Operation

The CREATE operation creates a new file and opens it for processing;
unless the file is specified as a temporary file, the CREATE operation
also creates a directory entry for the file.

The CREATE operation uses the device and directory elements of the
fully qualified file specification to determine the target directory;
it then uses the file name, type, and version of the fully qualified
file specification to form the entry in that directory.

3.7.2 OPEN Operation

Your program can establish an access path to a file by using the OPEN
operation. This makes file information available to your program, and
enables your program to use the following operations for the file:

e DISPLAY operation (to make more file information available to
your program).

® EXTEND operation (to allocate more space for the file).

® CONNECT operation (to establish a path to file records or
blocks) . The CONNECT operation enables your program to use
other stream operations and either record operations or block
operations.

e CLOSE operation (to release resources committed to the open

file). The CLOSE operation terminates the access path
established by the CREATE or OPEN operation that opened the
file.

3.7.3 DISPLAY Operation

If your program uses the OPEN operation to open a file, but does not
provide <control blocks and buffers for all the information that the
OPEN operation can return, you may want to use the DISPLAY operation
to obtain additional information while the file is open.

3.7.4 ERASE Operation

Your program can erase the contents of a file by using the ERASE
operation, and (optionally) remove its directory entry.

Unless your program provides a file identifier in the NAM block and
sets the FBSFID mask in the l-word FOP field of the FAB, the ERASE
operation also removes the specified directory entry for the file.

PROCESSING DIRECTORIES AND FILES

The ERASE operation uses the fully qualified file specification to
determine the target file. If the operation removes the directory
entry, it uses the device and directory elements of the fully
qualified file specification to determine the target directory, and
the file name, type, and version elements to determine the entry to be
removed.

3.7.5 EXTEND Operation

Your program can increase the allocation for an open file by using the
EXTEND operation. Note that RMS-11 automatically extends the file
allocation when it needs more space; you can use the EXTEND operation
to make large extensions (avoiding repeated automatic extensions) or
exact extensions (avoiding wasteful automatic extensions).

3.7.6 CLOSE Operation

Your program can close an open file by wusing the CLOSE operation.
This releases task and system resources (other than the file itself)
and makes those resources available for other uses.

3.8 WRITING WILDCARD LOOPS

You can include wildcard characters in an RMS-11 file specification
and use the PARSE and SEARCH operations to identify files that match
the wildcard specification. This allows you to program a wildcard
loop that successively (and selectively, if you wish) processes files
matching the wildcard specification.

An advantage of RMS-11 wildcarding over system wildcard commands 1is
that your processing can be selective. For example, if you use a
system wildcard command to rename a group of files, the entire group
is renamed; if you use a wildcard loop in a program, the program can
fully examine information about each file and even the contents of
each file to decide whether to rename it.

The next three sections show:

e The structure of a wildcard loop and the behavior of directory
and file operations in the loop

e How to write a wildcard 1loop that nonselectively uses the
ERASE, REMOVE, or RENAME operation on successive matching
files

e How to write a wildcard 1loop that selectively performs
directory and file operations on successive matching files

3.8.1 Introduction to Wildcarding

This discussion assumes that you want to write a program 1loop that
uses a wildcard input file specification, and that you want to use the
same control blocks (FAB and NAM block) for all operations associated
with the wildcard loop.

PROCESSING DIRECTORIES AND FILES

A series of wildcard operations can be viewed as having four steps:
1. 1Initializing for wildcarding
2. Finding the next matching file
3. Operating on the found file
4. Ending wildcarding

The next sections discuss these steps.

3.8.1.1 1Initializing for Wildcarding - The PARSE operation
initializes control blocks (FAB and NAM block) for wildcard
operations. Place the $PARSE macro before the wildcard loop in your
program.

The PARSE operation sets the NBSWCH mask in the l-word FNB field of
the NAM block to show that wildcard operations are in progress. (Your
program must clear the NBSWCH mask if it will not perform SEARCH
operations after a PARSE operation.)

The PARSE operation also forms a match-pattern in the expanded string
buffer (whose address 1is in the l-word ESA field of the NAM block);
this match-pattern is used by subsequent wildcard SEARCH operations.

A series of SEARCH operations requires a NAM block that specifies both
expanded string and resultant string buffers. (The resultant string
buffer is specified in the l-word RSA field of the NAM block.) Your
program must not alter the expanded string, the resultant string, or
other NAM block contents between the PARSE operation and the end of
the subsequent series of SEARCH operations.

3.8.1.2 Finding the Next Matching File - The SEARCH operation finds
the next file (if any) that matches the wildcard input file
specification. (If the SEARCH operation cannot find another matching
file, wildcarding ends; see Section 3.8.1.4.)

The SEARCH operation returns a fully qualified file specification in
the resultant string buffer, along with device, directory, and file
identifiers for the found file.

The SEARCH operation in your wildcard 1loop can either be explicit
(your 1loop contains the $SEARCH macro) or, for some operations,
implicit (RMS-11 automatically performs the SEARCH operation). 1If you
use the explicit SEARCH operation, place the $SEARCH macro inside the
loop but before other operation macros.

If you use an ERASE, REMOVE, or RENAME (0ld FAB) operation in the loop
with the FBSFID mask in the 1l-word FOP field of the FAB cleared,
RMS-11 implicitly performs a SEARCH operation (to find the next
matching file) before performing the ERASE, REMOVE, or RENAME
operation. This allows your wildcard loop to omit the $SEARCH macro.
(If the 1implicit SEARCH operation cannot find another matching file,
wildcarding ends; see Section 3.8.1.4.)

PROCESSING DIRECTORIES AND FILES

3.8.1.3 Operating on the Found File - A number of directory and file
operations are wildcard-transparent in the sense that they preserve
both wildcard context information and information about the last-found
file. This means that your program can use the operations within a
wildcard loop without changing the wildcard context; the series of
wildcard operations is continuable.

The wildcard-transparent operations are CLOSE, DISPLAY, and EXTEND,
and (if the FBSFID mask in the l-word FOP field of the FAB is set)
ERASE, OPEN, REMOVE, and RENAME (old FAB).

3.8.1.4 Ending Wildcarding - A series of wildcard operations (using a
specific FAB and NAM block) ends when a directory or file operation
discards wildcard context information or when your program clears the
NBSWCH mask in the l-word FNB field of the NAM block.

Typically, the operation that ends wildcarding is a SEARCH operation
that cannot find another matching file. It returns the ERSNMF
completion status code and clears the NBSWCH mask in the 1l-word FNB
field of the NAM block.

If your program exits from a wildcard loop before the SEARCH operation
fails to find a matching file, the NBSWCH mask in the l-word FNB field
of the NAM block is still set, and your program must clear it.

Executing the PARSE operation during a wildcard series ends that
series and initializes control blocks for a new series.

Executing a CREATE or ENTER operation, or an OPEN operation with the
FBSFID mask in the 1l-word FOP field of the FAB cleared, ends the
wildcard series for that FAB.

3.8.2 Nonselective ERASE, REMOVE, or RENAME Wildcard Operations

You can write a wildcard 1loop that performs nonselective ERASE,
REMOVE, or RENAME operations on successive matching files, where
RMS-11 implicitly performs a SEARCH operation before each ERASE,
REMOVE, or RENAME operation.

To do this, do the following:

1. Use the PARSE operation to initialize control block fields
for wildcarding.

2. Clear the FBSFID mask in the l-word FOP field of the FAB (for
the RENAME operation, the old FAB). This causes the ERASE,
REMOVE, or RENAME operation to perform an implicit SEARCH
operation before performing its own processing.

3. Use the ERASE, REMOVE, or RENAME operation to operate on the
next matching file.

4. Examine the STS field of the FAB. If it contains the ER$NMF
completion status code, there was not another matching file;
in that case, go to step 7.

5. Perform other in-loop processing (such as reporting the file
specification of the erased, removed, or renamed file).

PROCESSING DIRECTORIES AND FILES

6. Go to step 2.

7. The wildcard series 1is finished; continue with other
processing.

The following program segment illustrates this procedure, performing
the ERASE operation. In the program segment, FABADR is a label giving
the address of the FAB for the operations, and RO is wused (for the
$STORE and $COMPARE macros) to contain the address of the FAB.

SPARSE #FABADR ;Set up for wildcarding
LOOP: MOV $#FABADR, RO ;FAB address to RO

SOFF #FBSFID,FOP,R0 ;Use implicit search

; (FBSFID off)

SERASE #FABADR ;Try to erase next file

SCOMPARE #ERSNMF,STS,R0 ;Was there a matching file?

BEQ DONE ;No more matching files

. . . ;Other in-loop processing

BR LOOP ;On to next matching file
DONE: « e e ;Continue with other

; Processing

3.8.3 Selective Wildcard Operations

You can write a wildcard 1loop that performs directory and file
operations on selected matching files, where your program explicitly
performs a SEARCH operation at the beginning of each iteration of the
loop. To do this, do the following:

1. Use the PARSE operation to initialize <control ©block fields
for wildcarding.

2. Use the SEARCH operation to obtain information about the next
file that matches the wildcard specification.

3. Examine the STS field of the FAB. If it contains the ERSNMF
completion status code, there was not another matching filej;
in that case, go to step 6.

4. Perform directory and file operations on the found file. If
ERASE, OPEN, REMOVE, or RENAME operations are included, be
sure the FBSFID mask in the l-word FOP field of the FAB (for
the RENAME operation, the old FAB) is set.

Do not perform CREATE, ENTER, or PARSE operations, or OPEN
operations with the FBSFID mask cleared; these operations
end wildcarding.

Do not perform ERASE, REMOVE, or RENAME operations with the
FBSFID mask cleared; these operations perform an implicit
SEARCH operation, advancing to the next matching file.

5. Go to step 2.

6. The wildcard series 1is finished; continue with other
processing.

PROCESSING DIRECTORIES AND FILES

The following program segment illustrates the procedure, perf

the ERASE operation on selected files.

In the program segment,

orming
FABADR

is a label giving the address of the FAB for the operations, and RO is

usead

(for the S$COMPARE macro)

LOOP:

NOOP:

DONE:

SPARSE

$SEARCH
MOV
SCOMPARE
BEQ

BNE
MOV
$SET
SERASE

BR

#FABADR

#FABADR
#FABADR,RO

#ERSNMF, STS, RO

DONE

NOOP
#FABADR, RO

4FBSFID,FOP,R0O

#FABADR

LOOP

to contain the address of the FAB.

;Set up for wildcarding

;Find next matching file
;FAB address to RO

;Any more matching files?
;No more matching files
;Decide whether to delete
; file (if so, Z-bit on)
;Don't delete file

;FAB address to RO
;Explicit SEARCH already
;Erase file contents
;Other in-loop processing
;On to next matching file

;Continue with other
; processing

done

CHAPTER 4

PROCESSING RECORDS AND BLOCKS

This chapter describes use of RMS-11 stream, record, and block
operations; its major sections are:

e Synchronous and asynchronous operations
e Completion status

® Streams

® Record processing

e Block processing

4.1 SYNCHRONOUS AND ASYNCHRONOUS OPERATIONS

An RMS-11 stream, record, or block operation executes either
synchronously or asynchronously.

4.1.1 Synchronous Operations

If an operation executes synchronously, execution control is not
returned to your program until the operation has completed; your
program is idle during the operation's execution. To specify
synchronous operation for a stream, record, or block operation, clear
the RBSASY mask in the l-word ROP field of the RAB.

4.1.2 Asynchronous Operations

If an operation executes asynchronously, execution control may be
returned to your program before the operation has completed; this
allows your program to continue executing during the operation's
execution. To specify asynchronous operation for a stream, record, or
block operation, set the RB$ASY mask in the l-word ROP field of the
RAB. (You must also have specified the ASYN argument to the RABSB
macro when you declared the RAB, and must select the asynchronous
support modules when you task build your program.)

Your program can, for example, specify an asynchronous write operation
and continue its processing even while the file processor is waiting
for access to the device.

PROCESSING RECORDS AND BLOCKS

Only one operation (either synchronous or asynchronous) at a time may
be active for a stream. Your program must make sure that an
asynchronous operation has completed either by using the WAIT
operation or by using completion routines to set user-defined flags.

During processing, RMS-11 guards against 1illegal interleaving of
operations on the same file as follows:

e A file operation begins by verifying that no record operation
is in progress for the target file.

e A record operation begins by verifying that no file operation
is in progress for the target file.

e If a synchronous operation detects that it is executing within
an asynchronous operation's completion handler, it verifies
that no other record operation is in progress for the target
file.

If one of these verifications fails, the operation returns the ERSACT
completion in the STS field of the FAB or RAB.

If your program attempts an operation using a FAB or RAB that 1is
already 1in use by another operation, the attempted operation returns
the fatal completion ERSACT in RO (because the STS field of the FAB or
RAB belongs to the other operation).

If your program attemps a WAIT operation within the completion handler
for an asynchronous operation, the attempted operation returns the
fatal completion ERSAST in RO (because otherwise a deadlock could
occur) .

4.2 COMPLETION STATUS

A stream, record, or block operation returns a completion status code
in the 1l-word STS field of the RAB; it may also return a completion
status value in the l-word STV field of the RAB.

4.3 STREAMS

A stream is a path from your program to the data in a file. The
CONNECT operation establishes a stream; for the CREATE or OPEN
operation that opened the file, your program specified either record
access or block access.

If it specified record access, the stream is a record stream and
supports only stream operations and record operations; if it
specified block access, the stream is a block stream and supports only
stream operations and block operations.

For the CONNECT operation, your program specifies the FAB for the file
(in the 1l-word FAB field of the RAB), and the CONNECT operation
returns an internal stream identifier (in the l-word ISI field of the
RAB) . All stream, block, and record operations (except CONNECT)
identify the file wusing the internal stream identifier; the
DISCONNECT operation terminates the stream, and clears the internal
stream identifier.

PROCESSING RECORDS AND BLOCKS

4.4 RECORD PROCESSING

This section describes wuse of RMS-11 record processing. Its
subsections are:

® Record streams: the paths from your program to file records
® Record context: the "current location" of a stream in a file
® Record access modes: the ways your program can access records

® Record buffers: the locations of records in your program's
space

® Locate mode: a way of speeding record processing
e Stream operations: stream operations for a record stream

® Record operations: operations that access records

4,4,1 Record Streams

A record stream is a path from your program to the records in a file.
Your program establishes a record stream when it uses the CONNECT
operation to connect a stream to a file (opened for record access by
an earlier CREATE or OPEN operation). A record stream supports stream
operations and record operations, but not block operations.

If the target file for a stream is a relative or indexed file, your
program can establish more than one stream for the file; 1if, in
addition, your program specifies access sharing, more than one task
can establish streams for the file.

4,4,2 Record Context

A record stream has a record context, which consists of a
current-record context and a next-record context. Some record
operations use the current record or next record as the target for the
operation; some stream and record operations change the
current-record context, the next-record context, or both.

The notion of "following record" is important to record context
because the next-record context 1is often established as the record
"following" the current record. The precise meaning of "following

record" depends on the file organization:

e In a sequential file, the record following a given record is
the one immediately following it in physical sequence.

e In a relative file, the record following a given record is the
one in the first higher-numbered cell that contains a record.

e In an indexed file, a record follows another only with respect
to an index; each index imposes an order on the file records.
The record following a given record (under a given index) 1is
the record whose record key is the smallest in the file that
is greater than the record key of the given record; among
records having identical record keys, a record written later
follows a record written earlier.

PROCESSING RECORDS AND BLOCKS

Note that although an operation may establish the next-record context,
that context 1is not evaluated until another operation uses it. For
example, if your program connects a stream to a relative file that
contains records only 1in cells 5 and 10, a sequential access GET
operation returns the record in cell 5 and establishes both
current-record and next-record context; if another stream or task
then inserts a record in cell 7 before your program executes a second
sequential access GET operation, that GET operation returns the new
record (cell 7), even though the record did not exist when the
next-record context was established.

4.4.3 Record Access Modes

The record operations FIND, GET, and PUT allow your program to specify
a record access mode (in the l-byte RAC field of the RAB); the record
access mode determines the target record for the operation. The
record access modes are:

® Sequential access
® Key access
® RFA access

The next sections discuss these access modes.

4.4.3.1 Sequential Access -~ Your program specifies sequential access
by setting the RBS$SEQ code in the l-byte RAC field of the RAB. A
sequential access FIND or GET operation has as 1its target the next
record. (Exception: a sequential access GET operation that
immediately follows any FIND operation has as its target the current
record, which is the record found by the FIND operation.)

The target of a sequential access PUT operation depends on the file
organization, as follows:

® For a sequential file, a series of sequential access put
operations must begin with the next-record context at the
end-of-file. The series of PUT operations adds new records at
the end-of-file.

e For a relative file, a series of sequential access PUT
operations must begin with the next-record context set such
that the first cell examined is empty (unless the RBSUIF mask
in the l-word ROP field of the RAB is set). The series of PUT
operations adds new records 1in successive cells; if a
nonempty cell is encountered, the PUT operation returns the
ERSREX completion (unless the RBSUIF mask 1is set, in which
case the existing record is overwritten).

e For an indexed file, a series of sequential access PUT
operations does not depend on the next-record context;
however, a PUT operation in the series returns the ERSSEQ
completion if the wvalue of the record primary key for the
operation is less than the value of the record primary key for
the preceding PUT operation.

A sequential access FIND or GET operation sets the current-record
context to the target record, and sets the next-record context to the
record following the target record. Sequential access PUT operations
leave both the current-record and next-record contexts undefined.

PROCESSING RECORDS AND BLOCKS

This targeting and context setting means, generally speaking, that a
series of sequential access operations operates on successive records.
Specifically, series of sequential access operations result as
follows:

® A series of sequential access FIND operations sets the stream
context to successive records.

e A series of sequential access GET operations reads successive
records.

e A series of sequential access PUT operations writes successive
records (for an indexed file, possibly interspersed with
existing records).

e A series of paired sequential access FIND and seqguential
access GET operations reads successive records.

4.4.3.2 Key Access - Your program specifies key access by setting the
RBSKEY code 1in the l-byte RAC field of the RAB. A key access FIND,
GET, or PUT operation has as its target the record that your program
specifies by specifying the key. For a relative file or for a
sequential disk file with fixed-length records, your program specifies
the key as a relative record number. Specify the relative record
number in the l-word KBF field of the RAB and the key size as 0 or 4
in the l-byte KSZ field of the RAB.

For a FIND or GET operation for an indexed file, your program
specifies the index of reference and a key buffer that contains the
record key. Specify the index of reference in the l-byte KRF field of
the RAB, the address of the key buffer in the l-word KBF field of the
RAB, and the key size in the 1l-byte KSZ field of the RAB,.

A key access FIND or GET operation sets the current-record context to
the record that 1is the target of the operation; a key access PUT
operation leaves the current-record context undefined.

A key access FIND or PUT operation does not affect the next-record
context; a key access GET operation sets the next-record context to
the record following the target record.

The target of a key access FIND, GET, or PUT operation depends on the
operation and on the file organization:

e For a relative file or for a sequential disk file with
fixed-length records, the key 1is a positive integer and
specifies the position of the record in the file. This key is
the relative record number (RRN) for the record; RRN 1
specifies the first record, and so forth.

If your program sets the RBSKGT mask in the l-word ROP field
of the RAB, a FIND or GET operation searches for a record
whose RRN is greater than the given RRN; if it sets the
RBSKGE mask in the l-word ROP field of the RAB, the operation
searches for a record whose RRN is greater than or equal to
the given RRN; if it sets neither of these masks, the
operation searches for a record with the given RRN.

PROCESSING RECORDS AND BLOCKS

Note that a FIND, GET, or PUT operation to a relative file or
to a sequential disk file with fixed length records returns
the RRN for the target record in the 2-word BKT field of the
RAB.

e For a FIND or GET operation to an indexed file, the key
specifies a record in the file whose record key matches the
given key. Your program specifies both the key to be matched
and the file index; the key data type must agree with the key
data type for the index (string, packed decimal, binary, or
signed integer).

For a string key, your program specifies the portion of the
key that must be matched. If the value in the l-byte KSZ
field of the RAB is nonzero but is smaller than the record
key, then only that smaller initial portion of the key must
match.

If your program sets the RB$KGT mask in the l-word ROP field
of the RAB, a FIND or GET operation searches for a record
whose key is greater than the given key; if it sets the
RBSKGE mask in the l1-word ROP field of the RAB, the operation
searches for a record whose key is greater than or equal to
the given key; if it sets neither of these masks, the
operation searches for a record whose key exactly matches the
given key.

e For a PUT operation to an indexed file, the key (for each

index) is in the record. The operation has no true target;
the record is inserted at the proper place and each index |is
updated.

This targeting and context setting means that although the target of
the key access operation 1is a random (selected) record, the record
context allows subsequent sequential access processing. Therefore
your program can use key access to "jump" to a selected point in a
file, then use sequential access to process successive records.

4.4,.3.3 RFA Access - Your program specifies RFA access by setting the
RBSRFA code in the l-byte RAC field of the RAB. An RFA access FIND or
GET operation has as its target the record that your program specifies
by RFA (record file address). (The FIND, GET, and PUT operations
return the RFA for the target record; 1if your program saves the RFA,
it can wuse RFA access for the record in subsequent FIND and GET
operations.) Specify the RFA in the 3-word RFA field of the RAB.

An RFA access FIND or GET operation sets the current-record context to
the record that is the target of the operation. An RFA access FIND
operation does not affect the next-record context; an RFA access GET
operation set the next-record context to the record following the
target record.

This targeting and context setting means that although the target of
the RFA access operation 1is a random (selected) record, the record
context allows subsequent sequential access processing. Therefore
your program can use RFA access to "jump" to a selected point in a
file, then use sequential access to process successive records.

PROCESSING RECORDS AND BLOCKS

4.4.4 Record Buffers

A PUT or UPDATE operation transfers a record from a record buffer (in
your program's space) to a file; for a VFC record, the operation also
transfers the fixed-length portion of the record from a separate
record header Dbuffer. Your program specifies the address of the
record buffer in the l-word RBF field of the RAB and the size of the
record in the 1l-word RSZ field of the RAB; for a VFC record, your
program also specifies the address of the record header buffer in the
l1-word RHB field of the RAB.

A GET operation transfers a record from a file to an RMS-11 internal
I/0 buffer and to a user buffer in your program's space. Your program
specifies the address of the user buffer in the l-word UBF field of
the RAB and its size in the l-word USZ field of the RAB. Along with
the record, the GET operation returns the address of the record in the
l-word RBF field of the RAB and its size in the l-word RSZ field of
the RAB.

For a VFC record, a GET operation also transfers the £fixed-length
portion of the record to a separate record header buffer in your
program's space. Your program specifies the address of the record
header buffer in the l-word RHB field of the RAB.

Exception: if your program specifies locate mode for a GET operation,
RMS-11 may not transfer the record to the user buffer; see the next
section for a discussion of locate mode.

4.4.5 Locate Mode

The GET and PUT operations normally use RMS-11 internal I/O buffers as
intermediate storage between your program's buffers (record or user
buffers) and the file. By specifying locate mode for a GET or PUT
operation, your program requests RMS-11 to transfer records only
between its I/O buffers and the file, thus saving time. Your program
specifies 1locate mode by setting the RB$LOC mask in the l-word ROP
field of the RAB.

If your program specifies locate mode for a GET operation, RMS-11 may
transfer the record only to its internal I/O buffer (but not to the
user buffer). The GET operation routine decides whether to honor the
locate-mode request or to transfer the record to the user buffer
anyway; the operation returns the address and size of the retrieved
record (informing your program of the record's location -- the user
buffer or the I/0 buffer).

If your program specifies locate mode for a PUT operation, RMS-11
recognizes that the record may already be in its I/O buffer and if so
transfers it to the file from there.

Your program has (in the l-word RBF field of the RAB) the address of a
location (in the I/0 buffer if possible, otherwise in the user buffer)

that is suitable for building the next record; this address is
returned either by a previous 1locate-mode PUT operation or by an
initial locate-mode CONNECT operation. Therefore, if you use the

CONNECT operation for a stream that will use locate-mode PUT
operations, your program must specify locate mode for the CONNECT
operation, and must specify a user buffer (the address in the 1l-word
UBF field of the RAB and the size in the l-word USZ field of the RAB).

Note that specifying locate mode for a PUT operation has no effect
unless the file is sequential, the access mode is sequential, and the
record format is other than stream record format.

PROCESSING RECORDS AND BLOCKS

4.4.6 Stream Operations

Stream operations affect stream context and I/0 buffers (but not file
records). The stream operations for a record stream are:

® CONNECT: establish a record stream

e FLUSH: write unwritten buffers for a stream

® FREE: free locked bucket for a stream

® NXTVOL: set stream context to beginning of next volume
® REWIND: set stream context to beginning of current file
® WAIT: wait for completion of asynchronous operation

e DISCONNECT: terminate a record stream

The next sections discuss these operations.

4.4.6.1 CONNECT Operation - Your program uses the CONNECT operation
to establish a record stream. (The stream is a record stream because
your program specified record access for the CREATE or OPEN operation
for the file.)

The current-record context after a CONNECT operation 1is undefined;
the next-record context is (by default) the first record in the file.

For an indexed file, your program must specify an initial index of
reference so that the record context is initialized properly.

For a sequential file, your program can specify that the 1initial
record context 1is to be at the end-of-file (instead of the beginning
of the file); in that case, the next-record context after the
operation is the end-of-file.

For a sequential disk file, your program specifies the number of
blocks in the 1I/0 buffer for the stream; for a relative or indexed
file, your program specifies the number of I/O buffers for the stream.

If the stream will use locate-mode PUT operations, your program must
also specify locate mode and supply a user buffer. The CONNECT
operation returns the address of a location suitable for building the
first record to be output; see Section 4.4.5.

4.4.6.2 FLUSH Operation - Your program can use the FLUSH operation to
write any unwritten buffers for a stream (for example, to increase
data integrity by ensuring that all changes have been written to the
file); the FLUSH operation does not affect record context, except
that the current-record context is undefined for a following TRUNCATE
or UPDATE operation to a sequential file.

Note one special case: if the file was opened for deferred writing,
but not for write sharing, then the buffer may be controlled by
another record stream and will not be written by the FLUSH operation.

PROCESSING RECORDS AND BLOCKS

4.4.6.3 FREE Operation - Your program can use the FREE operation to
free a locked bucket for a stream; the FREE operation does not affect
stream context, except that the current-record context is undefined
for a following DELETE, TRUNCATE, or UPDATE operation.

4.4.6.4 NXTVOL Operation - Your program can use the NXTVOL operation
to advance the context for a stream to the beginning of the next
magtape volume. The current-record context after the operation is
undefined; the next-record context 1is the first record of the new
volume.

4,4.6.5 REWIND Operation - Your program can use the REWIND operation
to reset the context for a stream to the beginning-of-file or, for a
multivolume magtape file, the beginning-of-volume (if it is not the
first volume of the file).

The current-record context after the operation 1is undefined; the
next-record context is the first record 1in the volume (for a
multivolume magtape file) or the file; for an indexed file, your

program specifies the index of reference for the operation so that the
stream context is initialized properly.

4.4.6.6 WAIT Operation - When your program uses asynchronous
operation for a stream, it must eventually use the WAIT operation to
suspend processing until the asynchronous operation has completed;
the WAIT operation does not affect stream context.

4.4.6.,7 DISCONNECT Operation - Your program can use the DISCONNECT
operation to terminate a record stream, thus recovering the resources
committed for the stream (primarily pool space). The DISCONNECT
operation also discards record context and the internal stream
identifier.

4.4.7 Record Operations

Record operations affect stream context, buffers (I/0, user, and
record), and file records. The record operations are:

e FIND: transfer a record from a file to an I/0 buffer

® GET: transfer a record from a file to an I/0 buffer and to a
user buffer

e PUT: transfer a record from a user buffer to a file
e DELETE: remove a record from a file
e UPDATE: replace a record in a file

o TRUNCATE: remove the current record and all following records
from a sequential file

The next sections discuss these operations.

PROCESSING RECORDS AND BLOCKS

4.4.7.1 FIND Operation - Your program can use the FIND operation to
transfer a record (or part of a record) from a file to an I/0 buffer;
the FIND operation does not transfer the record to a user buffer.

Your program specifies an access mode (sequential, key, or RFA) for
the FIND operation; Section 4.4.3 describes the target record and
context-setting for the FIND operation (Section 4.4.3.1 for sequential
access, 4.4.3.2 for key access, and 4.4.3.3 for RFA access).

For a relative file or for a sequential disk file with fixed-length
records, the FIND operation returns the relative record number (RRN)
and the record file address (RFA) for the found record; for other
files, the FIND operation returns only the RFA for the found record.

4.4.7.2 GET Operation - Your program can use the GET operation to
transfer a record from a file to an I/0 buffer and to a user buffer
{which your program specifies).

Your program specifies an access mode (sequential, key, or RFA) for
the GET operation; Section 4.4.3 describes the target record and
context-setting for the GET operation (Section 4.4.3.1 for sequential
access, 4.4.3.2 for key access, and 4.4.3.3 for RFA access).

The GET operation returns the address and size of the retrieved
record, along with its RFA; for a relative file or for a sequential
disk file with fixed-length records, the GET operation also returns
the RRN for the retrieved record.

If your program specifies locate mode for the GET operation, it must
also specify a user buffer; see Section 4.4.5.

4.4.7.3 PUT Operation - Your program can use the PUT operation to
transfer a record from a user buffer to an I/0 buffer and to a file.

Your program specifies an access mode (sequential or key) for the PUT
operation; Section 4.4.3 describes the target record and
context-setting for the PUT operation (Section 4.4.3.1 for sequential
access, 4.4.3.2 for key access).

Your program can specify that RMS-11 must honor bucket fill numbers.

For an indexed file, your program can specify that each PUT operation
in a series 1is part of a mass insertion; for a relative file, your
program can specify that the PUT operation should overwrite the target
record (if any).

The PUT operation returns the RFA for the inserted record; for a
relative file or for a sequential disk file with fixed-lentgh records,
the PUT operation also returns the RRN for the inserted record.

If your program specifies locate mode for the PUT operation, it must
also specify a user buffer. The PUT operation returns the address of
a location suitable for building the next output record; see Section
4.4.5,.

PROCESSING RECORDS AND BLOCKS

4.4.7.4 DELETE Operation - Your program can use the DELETE operation
to remove a record from a relative or indexed file. The target of a
DELETE operation is the current record.

The current-record context after a DELETE operation is undefined; the
next-record context is unchanged.

For an indexed file, your program can specify that RMS-11 must use the
fast-deletion procedure. However, this procedure is faster because it
deletes only those alternate index pointers that it must; future
retrieval operations may be slowed by the presence of undeleted
alternate index pointers.

4.4.7.5 UPDATE Operation - Your program can use the UPDATE operation
to transfer a record from a user buffer to a file (overwriting the
existing record). The target of the UPDATE operation is the current
record, which is overwritten.

The current-record context after an UPDATE operation 1is wundefined;
the next-record context is unchanged.

Your program specifies the record buffer for the record to be inserted
(and, for a VFC record, the VFC-header buffer).

4.4.7.6 TRUNCATE Operation - Your program can use the TRUNCATE
operation to remove the current record and all following records
(through the end-of-file) from a sequential file. The current-record
context after a TRUNCATE operation is undefined; the next-record
context is the new end-of-file.

4.5 BLOCK PROCESSING

This section describes use of RMS-11 block processing. Its
subsections are:

e Block streams: the paths from your program to file blocks
e Block context: the "current location" of a stream in a file
® Block access modes: the ways your program can access blocks

e Block buffers: the locations of blocks 1in your program's
space

® Stream operations: stream operations for a block stream

® Block operations: operations that access blocks

4.5.1 Block Streams

A block stream is a path from your program to the blocks in a file.
Your program establishes a block stream when it uses the CONNECT
operation to connect a stream to a file (opened for block access by an
earlier CREATE or OPEN operation). A block stream supports stream
operations and block operations, but not record operations.

PROCESSING RECORDS AND BLOCKS

4.5.2 Block Context

A block stream has a block context, which consists of a readable-block
context and a writable-block context. The READ operation uses the
readable-block as its target block; the WRITE operation wuses the
writable-block as its target block; block operations change both the
readable-block and the writable-block contexts.

For a disk file, your program can use the READ or WRITE
read or write multiple blocks in a single operation. 1In that case,
reading or writing begins at the readable block or the writable block
(respectively), and continues through the number of blocks requested.

operation to

4.5.3 Block Access Modes

The block operations READ and WRITE allow your program to
block access mode (in the 2-word BKT field of the RAB);
access mode determines the target block for the operation.
access modes are:

specify a
the block
The block

e Sequential access

® VBN access

For a magtape file, your program can use either sequential block
access or VBN access; however, the program must access one block at a
time, and in sequential order (unless it uses the SPACE operation to
position the magtape).

The next sections discuss these access modes.

4.5.3.1 Sequential Access - Your program specifies sequential block
access by giving the value 0 in the 2-word BKT field of the RAB. A

sequential access READ operation has as its target the readable block;
it sets the readable-block context to the next-following unread block,

and sets the writable-block context to the target block (first Dblock
read for that READ operation).
A sequential access WRITE operation has as its target the writable

block; it sets both the readable-block and writable-block contexts to
the next-following unwritten block.

This targeting and context setting has the following results:

® A series of sequential access READ operations reads successive

blocks.

e A series of sequential access WRITE operations writes
successive blocks.

e A series of paired READ and WRITE operations updates
successive blocks.

PROCESSING RECORDS AND BLOCKS

4.5.3.2 VBN Access - A VBN access READ or WRITE operation reads or
writes blocks beginning with a wvirtual block that your program
specifies. Specify the virtual block number in the 2-word BKT field
of the RAB.

Note that your program can use VBN access to move to a random position
in a disk file, and then use sequential block access to process blocks
sequentially from that point.

4.5.4 Block Buffers

Your program specifies a user buffer for the READ operation; the
operation returns the address of the first-read byte and the number of
bytes read. Specify the address of the user buffer in the l-word UBF
field of the RAB and its size in the l-word USZ field of the RAB; the
READ operation returns the address of the first-read byte in the
l-word RBF field of the RAB and the number of bytes read in the l-word
RSZ field of the RAB.

Your program specifies the buffer containing the writable data for the

WRITE operation. Specify the buffer address in the l-word RBF field
of the RAB and its size in the l-word RSZ field of the RAB.

4.5.,5 Stream Operations

Stream operations affect stream context and I/0 buffers (but not file
blocks). The stream operations for a block stream are:

o CONNECT: establish a block stream

e FREE: free a locked block for a stream

e WAIT: wait for completion of asynchronous operation
e DISCONNECT: terminate a block stream

The next sections discuss these operations

4.5.5.1 CONNECT Operation - Your program uses the CONNECT operation
to establish a block stream. (The stream is a block stream because
your program specified block access for the CREATE or OPEN operation
for the file.)

After a CONNECT operation, both the readable-block and writable-block
contexts are the first block in the file.

4.5.5.2 FREE Operation - Your program can use the FREE operation to
free a locked block for a stream; the FREE operation does not affect
stream context.

PROCESSING RECORDS AND BLOCKS

4.5.5.3 WAIT Operation - When your program uses asynchronous
operation for a stream, it must eventually use the WAIT operation to
suspend processing until the asynchronous operation has completed;
the WAIT operation does not affect stream context.

4.5.5.4 DISCONNECT Operation - Your program can use the DISCONNECT
operation to terminate a block stream, thus recovering the resources
committed for the stream. The DISCONNECT operation also discards
block context and the internal stream identifier.

4.5.6 Block Operations

Block operations affect stream context, block buffers, and file
blocks. The block operations are:

e READ: transfer blocks from a file to a block buffer
e WRITE: transfer blocks from a block buffer to a file
e SPACE: set block context for a magtape file

The next sections discuss these operations.

4.5.6.1 READ Operation - Your program can use the READ operation to
transfer blocks from a file to a block buffer. Your program specifies
an access mode (seguential or VBN) for the READ operation; Section
4.5.3.1 describes sequential access; Section 4.5.3.2 describes VBN
access.

4.5.6.2 WRITE Operation - Your program can use the WRITE operation to
transfer blocks from a block buffer to a file. Your program specifies
an access mode (sequential or VBN) for the WRITE operation; Section
4.5.3.1 describes sequential access; Section 4.5.3.2 describes VBN
access.

Note that because the WRITE operation always writes to the file
immediately, the FLUSH operation has no use for block access.

4.5.6.3 SPACE Operation - Your program can use the SPACE operation to
set block context for a magtape file; the context is moved forward or
backward the specified number of blocks. After a SPACE operation,
both the readable-block and writable-block contexts are the specified
block.

CHAPTER 5

OPERATION MACRO DESCRIPTIONS

This chapter describes RMS-11 operation macros and the operation
routines they call. Each section of the <chapter describes an
operation macro and its corresponding operation. (For the SFIND,
SGET, $PUT, SREAD, and SWRITE macros, there is a separate description
for each access method.)
Each description is divided into the following parts:

® FORMAT - the format for the macro and its parameters

e CONTROL BLOCKS - the required and optional control blocks for
the operation

e OPTIONS - the options that you can select for the operation,
and the control Dblock fields and values that control the
options

e STREAM CONTEXT - the current-record and next-record contexts
(for a record stream) or the readable-block and writable-block
contexts (for a block stream) after the operation completes

e RETURNED VALUES - the wvalues that the operation routine
returns in control block fields and buffers

e CHECKLISTS - a list of the control block fields that you
supply to specify options, and a list of the control block
fields that contain returned values

The operation macros are:

e SCLOSE - Close an open file

e SCONNECT - Connect a record stream to an open file

® SCREATE - Create a new file and open it for processing

e SDELETE - Remove a record from a file

e SDISCONNECT - Disconnect a record stream

e SDISPLAY - Write file data into control block fields

e SENTER - Enter a file specification into a directory

® SERASE - Erase an existing file

e SEXTEND - Extend the allocation for an open file

e SFIND - Set the stream context to a record in a file

OPERATION MACRO DESCRIPTIONS

® SFLUSH - Write any unwritten buffers for a stream
® SFREE - Unlock a bucket locked by a stream
® SGET - Retrieve a record from a file

® SNXTVOL - Set stream context to the beginning of the next
magtape volume

e SOPEN - Open an existing file
® SPARSE - Write file data into a NAM block
e SPUT - Insert a record into a file

e SREAD - Read blocks from a file

e SREMOVE Delete a file specification from a directory
e SRENAME - Rename an existing file

® SREWIND Set stream context to beginning-of-file

e SSEARCH Search directories for a file specification

® SSPACE - Move magtape block stream context forward or backward
® STRUNCATE - Remove all following records from a file

® SUPDATE - Replace a record in a file

® SWAIT - Wait for asynchronous completion for stream

® SWRITE - Write blocks into a file

OPERATION MACRO DESCRIPTIONS
SCLOSE MACRO

5.1 SCLOSE MACRO

The SCLOSE macro calls the CLOSE operation routine to «close an open
file.

FORMAT
The format for the SCLOSE is:
SCLOSE fabaddr|[,[erraddr] [,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS
You must supply a FAB for the CLOSE operation.

If you supply a PRO block, the CLOSE operation reads 1its fields to
obtain new owner and protection codes for the file.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the CLOSE
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY Dblock); the 1index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiole DAT, PRO, or SUM XABs are illegal.

OPTIONS

Internal File Identifier

The CLOSE operation reads the internal file identifier for the file
from the l-word IFI field of the FAB. This identifier was written by
the CREATE or OPEN operation when the file was opened.

File Owner and Protection

If you want to change the owner of the target file, specify the
project (or group) portion of the owner code in the l-word PRJ field
of the PRO block, and specify the programmer (or member) portion in
the 1l-word PRG field of the PRO block; if you specify 0 for both
these fields, the PRO block (including the PRO field) is ignored.

If you want to change the file protection for the target file, specify
the protection code in the 1l-word PRO field of the PRO block (and
specify a nonzero value in the PRG or PRJ field); 1if you specify 0 in
this field, the operating system uses its defaults.

OPERATION MACRO DESCRIPTIONS
SCLOSE MACRO

Rewinding Magtape

For a magtape file, if you want the magtape rewound when the file |is
closed, set the FBSRWC mask in the l-word FOP field of the FAB. Note
that if the FBSRWC mask was set when the file was opened (by the
CREATE or OPEN operation), setting the mask has no effect for the
CLOSE operation.

STREAM CONTEXT

The CLOSE operation destroys stream context for any streams connected

by the <closing file (after writing any unwritten buffers for those
Streams) .

RETURNED VALUES

Private Buffer Pool

The CLOSE operation writes the address of the private buffer pool (if
any) for the file in the l-word BPA field of the FAB; if the CLOSE
operation clears the BPA field, the file had no private buffer pool.
If the file had a private buffer pool, the CLOSE operation writes the
size (in Dbytes) of the pool in the l-word BPS field of the FAB, or
clears this field if the file did not use a private buffer pool.

Internal File Identifier

The CLOSE operation clears the l-word IFI field of the FAB.

Completion Status and Value

The CLOSE operation returns completion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS
Table 5-1 lists control block fields that are input to the CLOSE

operation. Table 5-2 1lists control block fields that are output by
the CLOSE operation.

OPERATION MACRO DESCRIPTIONS
SCLOSE MACRO

Table 5-1: CLOSE Input Fields

Block Field

Description

ALL
ALL
DAT
FAB

FAB
FAB
KEY
KEY
PRO
PRO
PRO
PRO
SUM

AID
NXT
NXT
FOP

IFI
XAB
REF
NXT
NXT
PRG
PRJ
PRO
NXT

Area number

Next XAB address

Next XAB address .
File processing option mask

FBSRWC Rewind magtape after closing file

Internal file identifier

XAB address

Index reference number

Next XAB address

Next XAB address

Programmer or member portion of file owner code
Project or group portion of file owner code
File protection code

Next XAB address

Table 5-2: CLOSE Output Fields

Block Field

Description

FAB
FAB
FAB
FAB
FAB

BPA
BPS
IFI
STS
STV

Private buffer pool address
Private buffer pool size (bytes)
Internal file identifier
Completion status code
Completion status value

OPERATION MACRO DESCRIPTIONS
SCONNECT MACRO
5.2 SCONNECT MACRO
The $CONNECT macro calls the CONNECT operation routine to connect a
record stream to an open file, and initialize the stream context.
FORMAT
The format for the SCONNECT is:

SCONNECT rabaddr[,[erraddr] [,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.
CONTROL BLOCKS
You must supply a RAB for the CONNECT operation.

You must supply a FAB for the CONNECT operation.

OPTIONS

File Identification

Specify the address of the FAB in the l-word FAB field of the RAB.
The CONNECT operation reads the internal file identifier for the file
from the l-word IFI field of the FAB.

I/0 Buffers

For a sequential disk file, specify the size (in blocks) of the RMS-11
I/0 buffer for the stream in the l-byte MBC field of the RAB; the
largest legal value is 63. If you specify 0, the CONNECT operation
uses a buffer of one block. For a relative file, an indexed file, or
a sequential nondisk file, the CONNECT operation ignores the MBC
field.

For a relative or indexed file, specify the number of I/0 buffers for
the stream in the l-byte MBF field of the RAB. For a sequential file,
specify 0 in the MBF field. 1If you specify 0, the CONNECT operation
uses the minimum number of buffers: one for a sequential or relative
file, or two for an indexed file.

User Buffer (Locate Mode for Sequential File)

If you are connecting to a sequential file, and 1if you intend to
execute PUT operations in locate mode for the connected stream, then:

e Specify the address of the user buffer in the l-word UBF field
of the RAB.

® Specify the size (in bytes) of the user buffer in the 1l-word
USZ field of the RAB.

® Set the RBSLOC mask in the l-word ROP field of the RAB.

OPERATION MACRO DESCRIPTIONS
SCONNECT MACRO

This assures proper handling of the first PUT operation for the
stream.

Key of Reference (Indexed File)

For an indexed file, specify the key of reference in the 1-byte KRF
field of the RAB. This value specifies the index to be used in
establishing initial record context: 0 for the primary index, 1 for
the first alternate index, and so forth.

Initial Stream Context (Sequential File)

If you want to initialize the next-record context of a sequential file
to the end-of-file, set the RBSEOF mask in the l-word ROP field of the
RAB; if you do not set this mask, the CONNECT operation initializes
the next-record context ¢to the first record in the file (or to the
end-of-file if the file is empty).

Asynchronous Operation

If you want to execute the CONNECT operation asynchronously, set the
RBSASY mask in the 1l-word ROP field of the RAB; 1if you do not set
this mask, the CONNECT operation executes synchronously. (Your
program must also have given the ASYN argument to the RAB$B macro that
declared the RAB for the asynchronous operation.)

STREAM CONTEXT

For a record-access file, the current-record context after a CONNECT
operation 1is wundefined; the next-record context is the first record
in the file (under the specified index for an indexed file), or the
end-of-file, if the file is empty.

For a block-access file, both the readable-block and writable-block
contexts after a CONNECT operation are the first block in the file.

RETURNED VALUES

Internal Stream Identifier

The CONNECT operation writes an internal stream identifier in the
l-word 1ISI field of the RAB. Do not destroy this identifier; all
other stream, record, and block operation routines read it.

Record Buffer

The CONNECT operation copies the value from the UBF field into the
l-word RBF field of the RAB (the record address); this prepares the
record buffer for your use in case the first record operation for the
stream is a locate-mode PUT operation to a sequential file.

RFA

For block access, the CONNECT operation returns the logical
end-of-file wvalue 1in the 3-word RFA field of the RAB. The first two
words of this field are the VBN in which the 1logical end-of-file
occurs, and the third word is the offset of the first byte beyond the

5-7

OPERATION MACRO DESCRIPTIONS
SCONNECT MACRO

logical end-of-file within that block. This logical end-of-file value
is meaningful only for disk files.

Completion Status and Value
The CONNECT operation returns completion status in the 1l-word STS
field of the RAB and returns a completion value in the l-word STV

field of the RAB. Appendix A lists completion status symbols and
values.

CHECKLISTS

Table 5-3 lists control block fields that are input to the CONNECT
operation. Table 5-4 1lists control block fields that are output by
the CONNECT operation.

Table 5-3: CONNECT Input Fields

Block Field Description

FAB IFI Internal file identifier

RAB FAB FAB address

RAB KRF Key of reference

RAB MBC Multiblock count

RAB MBF Multibuffer count

RAB ROP Record processing option mask

RBSASY Asynchronous operation
RBSEOF Position to end-of-file
RBSLOC Locate mode

RAB UBF User buffer address
RAB Usz User buffer size (bytes)

Table 5-4: CONNECT Output Fields

Block Field Description

RAB ISI Internal stream identifier
RAB RBF Record buffer address

RAB RFA End-of-file address

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

5.3 SCREATE MACRO

The SCREATE macro calls the CREATE operation routine to create a new
file and open it for processing.

FORMAT
The format for the $CREATE is:
$CREATE fabaddr(,{erraddr] [,sucaddr]]

whare fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
tha address of the success handler for the operation.

CONTROL BLOCKS
You must supply a FAB for the CREATE operation.

If you supply a NAM block, the CREATE operation reads its fields to
obtain the expanded string buffer, and writes identifiers in its
fields.

To supply a NAM block for the CREATE operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

Each ALL block that you supply defines one area in the created file,
and you can place the area at a specific location. If you supply no
ALL blocks, the file has one area; you define this area in the FAB,
but you cannot place the area at a specific location. You cannot
supply more than one ALL block for a sequential or relative file.

Each KEY block that you supply defines one index for the created file.
You must supply at least one KEY block for an indexed file; you
cannot supply KEY blocks for a relative or sequential file.

If you supply a PRO block, the CREATE operation reads its fields to
oktain the protection for the file.

Tc supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the CREATE
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB. ’

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the index reference numbers must be consecutive
beginning with 0.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers must be consecutive beginning with
0.

Multiple DAT, PRO, or SUM XABs are illegal.

Note that if the LAN field of a KEY XAB is 0, RMS-11l will use the area
specified in the IAN field for the lowest level index for that index.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

OPTIONS

File Specification

The CREATE operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).

RMS~11 defaults are:

e Device -- The device to which the specified logical channel is
assigned, or SY: if the specified logical channel is not
assiqgned to any device.

e Directory -- The current directory for the task.
® Name, type, version -- Defaulted to null.
The file string and the default string must not contain wildcards.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the 1-byte FENS
field of the FAB; if you specify 0 in the FNS field, the CREATE
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
l-byte DNS field of the FAB; 1if you specify 0 in the DNS field, the
CREATE operation uses no default string.

IZ you set the FBSFID mask in the l-word FOP field of the FAB and
supply a NAM block, the CREATE operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

In the same circumstance, the CREATE operation reads the directory
identifier from the 3-word DID field of the NAM block; if this value
is nonzero, the specified directory overrides the directory 1in the
merged string.

Expanded String Buffer

If you want the CREATE operation to return the expanded string for the
created file, provide a buffer for the string. Specify the address of
the expanded string buffer in the l-word ESA field of the NAM block
and its size (in bytes) in the l-byte ESS field of the NAM block; if
you specify 0 in the ESS field, the CREATE operation does not return
the expanded string.

Supersession of Existing File

If you want to create a file that supersedes an existing file with the
same specification, set the FBS$SUP mask in the l-word FOP field of the
FAB; 1if you do not set the FBSSUP mask, and you specify a file that
already exists, the CREATE operation returns an error completion and
dces not create the new file.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Temporary or Marked-for-Delete File

If you want the created file to be a temporary file (one that has no
directory entry), set the FBSTMP mask in the l-word FOP field of the
FAB; if you do not set the FBSTMP mask, the created file has a
directory entry.

If you want the created file to be deleted when it is closed, set the
FBSMKD mask in the 1-word FOP field of the FAB; this causes the
operating system to delete the file when it has no accessing programs.
If you do not set the FBSMKD mask, the created file is not marked for
deletion.

If you want the created file to be a temporary file that is marked for
deletion, set the FBSTMD mask in the l-word FOP field of the FAB; the
FB$STMD mask includes the bits for both the FBSTMP and the FBS$SMKD
masks.

File Protection

Specify the protection for the created file in the l-word PRO field of
the PRO block; 1if you supply no PRO block, the operating system uses
its default file protection.

File Organization

Specify a file organization code in the l-byte ORG field of the FAB.
The symbols for file organization codes are:

FBSIDX Indexed file organization
FBSREL Relative file organization
FB$SSEQ Sequential file organization

Record Format

Specify the record format code in the l-byte RFM field of the FAB.
The symbols for record format codes are:

FBSFIX Fixed-length record format
FB$SSTM Stream record format

FBSUDF Undefined record format
FBSVAR Variable-length record format
FBSVFC VFC record format

If you specify VFC record format (FBSVFC code 1in the RFM field),
specify the size (in bytes) of the VFC header field in the l-byte FSZ
field of the FAB; 1if you specify 0, the CREATE operation uses the
value 2.

Blocked Records

If you are creating a sequential disk file, and if you want the file
to contain blocked records (records that cannot span block
bourdaries), set the FB$BLK mask in the l-byte RAT field of the FAB;
if you do not set the FBS$BLK mask, records can span block boundaries.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

If you are creating a relative or indexed file, the FBSBLK mask has no
effect on storage of records in the file. However, this mask will be
preserved and returned on OPEN operations. The FB$BLK mask is ignored
for files on unit-record devices.

Note that records are always blocked in a magtape file, regardless of
the FBS$BLK setting.

Record-Output Handling

Specify a record-output mask in the l-byte RAT field of the FAB. This
record-output attribute controls the handling of records that are
output to a unit-record device:

® FORTRAN-style record-output specifies FORTRAN-style
carriage-control handling.

e Carriage-return record-output specifies that a prefixed
linefeed and a suffixed carriage-return must be added to each
record on output to a print device.

e Print-format record-output specifies that the file is in print
format. This format is allowed only for files with VFC
records for which the fixed header size for each record 1is 0
or 2 bytes. (RMS-11 treats a header size of 0 as if you had
specified 2.)

When records from the file are written directly to a
unit-record device, RMS-11 interprets the first byte of the
VFC header as a prefix for the record and the second byte of
the header as a suffix for the record. RMS-11 further
interprets the prefix/suffix control bytes as follows:

If the top bit of the control byte is clear, the entire byte
is wused as a count of the number of carriage return/line feed
pairs with which to prefix or suffix the record.

If the top bit of the control byte is set, the low 5 bits of
the byte are used as the prefix or suffix character.

If you specify none of these attributes, records are output to
unit-record devices without special handling.

If you are creating a file on a device other than a unit-record
device, the record output mask has no effect on storage of records in
the file. However, this mask will be preserved and returned on OPEN
operations.

The symbols for record-output masks are:

FBSCR Add CRLF to print record (LF-record-CR)
FBSFTN FORTRAN-style carriage-control character in record
FBSPRN VFC print record handling

Record Size

Specify the record size (in bytes) in the l-word MRS field of the FAB
(unless you have specified undefined record format). For fixed-length
records, the CREATE operation uses this value as the record size; for
variable-length records, the CREATE operation uses this value as the
maximum record size; for VFC records, the CREATE operation uses this
value as the maximum size of the variable portion of each record.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

If you specify a nonzero value in the MRS field, RMS-11 checks the
size of each record written to the file against the MRS-field value,
and returns an error completion if the record size 1is inappropriate;
if you specify 0 in the MRS field, RMS-11 does not check record sizes
against the MRS-field value.

Maximum Record Number

If you specify relative file organization (FBSREL value in the ORG
field), specify the maximum record number in the 2-word MRN field of
the FAB., If you specify a nonzero value in the MRN field, RMS-11
checks the record number of each record written to the file against
the MRN-field value, and returns an error completion 1if the record
number is too large; 1if you specify 0 in the MRN field, RMS-11 does
not check record numbers against the MRN-field value.

Private Buffer Pool

If you want the CREATE operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and 1its size
(in bytes) 1in the l-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the CREATE
operation uses the central buffer pool.

The pool that the CREATE operation uses is also used by the DISPLAY
and EXTEND operations, and by stream and record operations while the
file is open.

Logical Channel

Specify the logical channel for the CREATE operation in the l-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
0.

The logical channel that the CREATE operation uses is also used by the
DISPLAY and EXTEND operations, and by stream and record or block
operations while the file is open.

Retrieval Pointers

Specify the number of retrieval pointers for the open file in the
l-byte RTV field of the FAB. If you specify 0, the CREATE operation
uses the operating system default; if you specify -1, the CREATE
operation maps as much of the file as possible.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Requested Access

Specify one or more requested-access masks in the l-byte FAC field of
the FAB. This mask determines the access that the creating program
has while the file is open. Regardless of what you specify, the
CREATE operation includes the mask FBSPUT (for record access) or
FBSWRT (for block access). The symbols for requested-access masks
are:

FBSDEL Request find/get/delete access
FBSGET Request find/get access

FBSPUT Request put access

FBSREA Request block read access

FBSTRN Request find/get/truncate access
FBSUPD Request find/get/update access
FBSWRT Request block write access

Note that FBSREA and FBSWRT override any record access requested.

Access Sharing

Specify the kinds of access that your program is willing to share with
other programs by setting an access-sharing mask in the l-byte SHR
field of the FAB. The symbols for access-sharing masks are:

FBSGET Share find/get access

FBSNIL No access sharing

FBSWRI Share find/get/put/update/delete access
FBSUPI Share any access (user-provided interlock)

The kinds of access sharing are:
e Shared read access

Your program is willing to allow other programs to read the
file, but not to write it.

e Shared write access

Your program is willing to allow other programs to both read
and write the file. Shared write access is not allowed for a
sequential file unless the file has undefined record format
and your program opens the file for block access; shared
write access is also not allowed for a relative or indexed
file that your program opens for block access. In such cases,
RMS-11 automatically converts the shared write access
specification to a shared read access specification
internally.

e No shared access

Your program is not willing to allow other programs to either
read or write the file. RMS-11 does, however, allow other
programs to read the file unless your program also requests
some form of write access (which 1is always the case for
CREATE) .

e User-provided interlocking

Your program and other cooperating programs define and enforce
their own access interlocking; RMS-11 does not check access
sharing. User-provided interlocking 1is allowed only for
sequential disk files; otherwise, the FBSUPI mask is ignored
(but other masks are honored).

5-14

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Deferred Writing

If you want deferred buffer writing for the open file, set the FB$SDFW
mask in the l-word FOP field of the FAB; This means that RMS-11 does
not necessarily write 1its buffers during a write-type operation
(DELETE, PUT, or UPDATE), but instead writes buffers only when it
needs them for other operations (or when your program executes the
FLUSH operation for the stream).

If you do not set the FBSDFW mask, the DELETE, PUT, and UPDATE
operations write buffers to the file immediately.

Note that record operations always use a form of deferred buffer
writing for sequential files, and that block operations never use
deferred buffer writing. Therefore you need only decide whether to
use deferred writing for a record stream to a relative or indexed
file.

File Locking

If you want the file to remain unlocked even if it 1is closed
abnormally, set the FBSDLK mask in the l-word FOP field of the FAB;
if you do not set the FBS$DLK mask, the operating system locks the file
if it is closed abnormally.

Magtape Block Size

If you are creating a magtape file, specify the block size (in
characters) for the file in the l-word BLS field of the FAB. 1If you
specify 0, RMS-11 uses the default block size for the device. If you
specify a nonzero value, it must be in the range 18 through 8192.

Magtape Positioning

You can position a magtape file on its magtape. To position the file
at the Dbeginning of the magtape (overwriting all files on the tape),
set the FBSRWO mask in the l-word FOP field of the FAB. To position
the file at the end of the last-closed file (overwriting any following
files), set the FBS$POS mask in the l-word FOP field of the FAB. If
you set neither of these masks, the CREATE operation positions the
file at the end of the last file on the magtape (overwriting nothing).

Rewinding Magtape on Close

If you want the magtape rewound when the created file is closed, set
the FBSRWC mask in the l-word FOP field of the FAB. If you do not set
this mask, the magtape will not be rewound on close unless you set the
EBSRWC mask for the CLOSE operation. Note, however, that if you set
the FBSRWC mask for the CREATE operation, the magtape will be rewound
even if you do not set the FBSRWC mask for the CLOSE operation.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Single-Area Unlocated File
If you want the created file to have only one area, and if you do not
want to place the area at a specific location on disk, then you supply
no ALL blocks for the CREATE operation, but rather specify the
following file attributes in FAB fields (as described in sections
below) :

e File allocation size

e Default file extension size

e File bucket size

e File contiguity

Multiarea or Located File

If you want to place the created file at a specific location on disk,
or if you want a created indexed file to have more than one area, then
you supply ALL blocks for the CREATE operation and vyou specify the
following area attributes in ALL block fields (as described in
sections below) :

® Area allocation size

e Default area extension size
e Area bucket size

® Area contiguity

® Area alignment

e Area location

Specify the area number for each area in the 1l-byte AID field of the
ALL block for the area.

Sequential and relative files are permitted to have only a single
area: area 0. Thus, for these files, the information in the (single)
ALL block describes the file as a whole, overriding any corresponding
information in the FAB.

Similarly, block-accessed indexed files are treated without regard for
their internal (logical) structure. In this case, only a single ALL
block is permitted, and its contents describe the file as a whole,
overriding any corresponding information in the FAB.

Symmetric treatment of ALL blocks by the OPEN operation facilitates
block-access CoPY operations, which are independent of file
organization.

Allocation Size

For a single-area unlocated file, specify the file allocation size (in
blocks) in the 2-word ALQ field of the FAB. For a multiarea or
located file, specify the area allocation size (in blocks) in the
2-word ALQ field of the ALL block for each area.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Default Extension Size

For a single-area unlocated file, specify the default extension size
(in blocks) for the file in the l-word DEQ field of the FAB. For a
multiarea or located file, specify the default extension size (in
blocks) for each area in the l-word DEQ field of the ALL block for the
area.

Bucket Size (Relative or Indexed File)

For a single-area unlocated file, specify the bucket size (in Dblocks)
for the file in the l-byte BKS field of the FAB. For a multiarea or
located file, specify the bucket size (in blocks) for each area in the
l-byte BKZ field of the ALL block for the area.

The largest allowed bucket size is 32 blocks; the smallest is 0. If
you specify a bucket size of 0, the CREATE operation uses l-block
buckets for the file or area.

Area Location

If you want to place an area at a particular location on disk, specify
an alignment mask in the l-byte ALN field of the ALL block for the
area. Logical block alignment places the area at a specified logical
block; virtual Dblock alignment (not allowed for area 0) places the
area near a specified virtual block. If you specify no alignment
mask, the CREATE operation places the area at any convenient location.
The symbols for alignment masks are:

XBSLBN Logical block alignment
XBSVBN Virtual block alignment

Specify the number of the logical block or virtual block in the 2-word
LOC field of the ALL block for the area.

If you do not want the file to be created unless the specified area
location is available, set the XBSHRD mask in the l-byte AOP field of
the ALL block for the area. If you do not set this mask, the CREATE
operation creates the file even if it must place the area at an
alternate location. Note that hard 1location at a virtual Dblock
location is illegal.

The CREATE operation creates areas by extending the file if either of
the following is true:

® You specify placement for areas other than area 0 (in which
case the CREATE operation ignores the FBSCTG mask).

e You specify contiquity in one or more ALL blocks, but not in
the FAB for the file.

Otherwise the CREATE operation creates the entire file as a single
operation, and, 1f you specified contiguity in the FAB, creates the
entire file as a single contiguous extent.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Contiguity

If you want a file to be contiguous, set the FBSCTG mask in the l-word
FOP field of the FAB and (for a multiarea file) do not specify disk
location for any area except (optionally) area O0; if the CREATE
operation cannot create a contiguous file, it returns an error
completion; 1f you do not set this mask, the CREATE operation does
not attempt to create a contiguous file.

If you want an area of a multiarea or located file to be contiguous,
set the XBSCTG mask in the l-byte AOP field of the ALL block for the
area. If you set this mask and the CREATE operation cannot create a
contiguous area, it returns an error completion; if you do not set
this mask, the CREATE operation does not attempt to create a
contiguous area.

Indexes

If you specify indexed file organization (FBSIDX value in the ORG
field), you must supply at 1least one KEY block for the CREATE
operation, unless you are using block access (in which case, any KEY
blocks are ignored). Each KEY block you supply defines one index for
the created file.

Specify the reference number for each index in the l-byte REF field of
the KEY block for the index. Specify 0 for the primary index, 1 for
the first alternate index, and so forth. Chain KEY blocks so that the
reference numbers are in consecutive order, and so that there are no
intervening XABs of other types (ALL, DAT, PRO, or SUM blocks).

Key Name

If you want to define a key name for the index, place the key name
string in a 32-character buffer. Specify the address of this buffer
in the l-word KNM field of the KEY block for the index. If vyou
specify 0 in the KNM field, the index has no key name.

Index Key Data Type

Specify a key data type code in the l-byte DTP field of the KEY block
for each index. The symbols for key data type codes are:

XBSBN2 16-bit unsigned integer
XBSBN4 32-bit unsigned integer
XB$IN2 15-bit signed integer
XBS$SIN4 31-bit signed integer
XBSPAC Packed decimal number
XB$STG String

Key Segments
Specify the size and position of each key segment in the 8-byte SIZ

field of the KEY block and the 8-word POS field of the KEY block for
the index. (Only a string key can have more than one segment.)

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

The first byte of the SIZ field is for the size (in bytes) of the
first key segment, the second byte is for the second segment, and so
forth. 1If the key is to have fewer than eight segments, specify 0 in
the remaining bytes of the SIZ field. (The CREATE operation does not
check segment sizes after the first 0 it encounters in the SIZ field.)

The first word of the POS field is for the position of the first key
segment, the second word is for the second segment, and so forth. If
the key has fewer than eight segments, the CREATE operation ignores
the remaining words of the POS field. (The first position in a record
is position 0.)

Key Changes

For an alternate index, if you want to allow the key to change during
update operations, set the XBSCHG mask in the l-byte FLG field of the
KEY block and the XB$DUP mask in the l-byte FLG field of the KEY block
for the index; 1if you do not set these masks, RMS-1l1l returns an errorxr
if a program attempts to change the value of a record key during
updating.

Key Duplications

If you want to allow duplicate keys in an index, set the XB$DUP mask
in the l-byte FLG field of the KEY block for the index. If you do not
set this mask, RMS-1ll1l returns an error if a program attempts to insert
or update a record that would create a duplicate record key. Note
that the XBSDUP mask must be set if record keys in the index are to be
changeable during update.

Null Keys

If you want to omit null keys from an alternate index, set the XBSNUL
mask in the l-byte FLG field of the KEY block for the index, and (for
a string key) specify the null character for the key in the 1l-byte NUL
field of the KEY block (the null value for a nonstring key is 0).

If you do not set the XBSNUL mask, all keys are included in the index;
if you set the XBSNUL mask, a nonstring key with a 0 value or a string
key with an all-null value will not appear in that alternate index.
Index Areas

Specify areas for the data records and for the levels of the index:

® The area for data records in the l-byte DAN field of the KEY
block

® The area for the lowest index level in the l-byte LAN field of
the KEY block

® The area for higher index levels in the l-byte IAN field of
the KEY block

Note that the bucket sizes of the LAN and IAN areas of a given index
must be identical.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Bucket Fill Numbers

Bucket fill numbers guide the PUT and UPDATE operations in deciding
how many records to place in each bucket. A bucket fill number of 0
is usually appropriate, and specifies that buckets should be filled
completely.

A nonzero bucket fill number specifies the number of bytes that should
be filled in each bucket. If the specified bucket fill number is less
than half the bucket size, it is rounded up to half the bucket size;
if the specified number is more than the bucket size, it is rounded
down to the bucket size.

Specify the fill numbers for data buckets and index buckets: the fill
number for data buckets in the l-word DFL field of the KEY block, and
the fill number for index buckets in the l-word IFL field of the KEY
block.

Longest Record Length

If you specify block access for the created file, and you plan to copy
an existing file into the new file, you can specify the length of the
longest record in the new file in the l-word LRL field of the FAB.

RETURNED VALUES

Internal File Identifier

The CREATE operation writes an internal file identifier in the 1l-word
IFI field of the FAB. (The CLOSE operation clears the internal file
identifier.)

The CLOSE, CONNECT, DISPLAY, and EXTEND operations read the internal
file identifier; do not alter the IFI field while the file is open.

Device Characteristics

The CREATE operation returns device characteristics as masks 1in the
l-byte DEV field of the FAB. The device characteristics are:

e Printer or terminal (indicated by the set FBSCCL mask in the
l-byte DEV field of the FAB and the set FBSREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask
in the 1l-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

® Unit-record device (indicated by the set FBSREC mask in the
l-byte DEV field of the FAB).

® Non-ANSI magtape or cassette tape (indicated by the set FBS$SDI
mask in the 1l-byte DEV field of the FAB and the set FBSREC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

e ANSI-format magtape (indicated by the set FB$SQD mask in the
l-byte DEV field of the FAB),.

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Device, Directory, and File Identifiers

If you supply a NAM block, the CREATE operation writes a device
identifier in the 2-word DVI field of the NAM block, a directory
identifier in the 3-word DID field of the NAM block, and a file
identifier in the 3-word FID field of the NAM block.

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields in the NAM block), the CREATE operation writes the file
specification for the created file in this buffer, and writes the
length (in bytes) of the specification string in the l-byte ESL field
of the NAM block.

File Specification Characteristics

The CREATE operation sets masks in the l-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

Wildcarding

The CREATE operation clears the NBSWCH mask in the l-word FNB field of
the NAM block; this shows that no wildcard context exists after the
CREATE operation. It also clears the l-byte RSL field of the NAM
block to show that no resultant string was returned.

Extension Sizes

The CREATE operation returns the size (in blocks) of each allocation
it makes. If you created only area 0 using FAB fields, the CREATE
operation writes the size of the allocation in the 2-word ALQ field of
the FAB. If you created areas using ALL blocks, the CREATE operation
writes the size of each area allocation in the 2-word ALQ field of the
ALL block for the area.

Completion Status and Value
The CREATE operation returns completion status in the l-word STS field

of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.

OPERATION MACRO DESCRIPTIONS

SCREATE MACRO

CHECKLISTS

Table 5-5 lists control block fields that are input to the CREATE
operation.
the CREATE operation.

Table 5-6 1lists control block fields that are output by

Table 5-5: CREATE Input Fields

Block Field

Description

ALL
ALL

ALL
ALL

ALL
ALL
ALL
ALL
DAT
FAB
FAB
FAB
FAB
FAB
FAB
FAB
FAB
FAB

FAB
FAB
FAB

AID
ALN

ALQ
AOP

BKZ
DEQ
LOC
NXT
NXT
ALQ
BKS
BLS
BPA
BPS
DEQ
DNA
DNS
FAC

FNA
FNS
FOP

Area number
Initial area alignment request

XBSLBN Logical block alignment
XBSVBN Virtual block alignment

Initial area allocation request size (blocks)
Area option mask

XBSCTG Contiguous area request
XBSHRD Area hard location request

Area bucket size (blocks)

Area default extension size (blocks)

Initial area location request

Next XAB address

Next XAB address

Initial file allocation request size (blocks)
File bucket size (blocks)

Magtape block size (characters)

Private buffer pool address

Private buffer pool size (bytes)

Permanent file default extension size (blocks)
Default string address

Default string size (bytes)

Requested access mask

FBSDEL Request find/get/delete access
FBSGET Request find/get access

FBSPUT Request put access

FBSREA Request block read access

FBSTRN Request find/get/truncate access
FBSUPD Request find/get/update access
FBSWRT Request block write access

File string address
File string size (bytes)
File processing option mask

FBSCTG Contiguous file request

FBSDFW Defer writing

FBSDLK No file locking on abnormal close
FBSFID Use information in NAM block

FBSMKD Mark file for deletion

FBSPOS Position magtape after last-closed file
FBSRWC Rewind magtape after closing file
FBSRWO Rewind magtape before creating file
FBS$SUP Supersede existing file

FBSTMD Temporary file, mark for deletion
FBSTMP Temporary file

(Continued on next page)

OPERATION MACRO DESCRIPTIONS
SCREATE MACRO

Table 5-5 (Cont.): CREATE Input Fields

Block Field Description

FAB FSZ Fixed control area size for VFC records (bytes)
FAB LCH Logical channel number

FAB LRL Longest record length

FAB MRN Maximum record number

FAB MRS Maximum record size (bytes)

FAB NAM NAM block address

FAB ORG File organization code

FBSIDX Indexed file organization
FBSREL Relative file organization
FBSSEQ Sequential file organization

FAB RAT Record handling mask
FBSBLK Blocked records
FBSCR Add CRLF to print record (LF-record-CR)
FBSFTN FORTRAN-style carriage-control character in
record

FBSPRN VFC print record handling
FAB RFM Record format code

FBSFIX Fixed-length record format
FBSSTM Stream record format

FBSUDF Undefined record format
FBSVAR Variable-length record format
FBSVEC VFC record format

FAB RTV Retrieval pointer count
FAB SHR Shared access mask

FBSGET Share find/get access
FBSNIL No access sharing
FBSWRI Share find/get/put/update/delete access

FBSUPI Share any access (user-provided interlock)
FAB XAB XAB address
KEY DAN Data area number
KEY DFL Data bucket fill factor
KEY DTP Key data type code

XBSBN2 l6-bit unsigned integer
XBSBN4 32-bit unsigned integer
XBSIN2 15-bit signed integer
XBSIN4 31-bit signed integer
XBSPAC Packed decimal number
XBSSTG String

KEY FLG Index option mask
XBSDUP Duplicate record keys allowed

XBSCHG Record key changes allowed on update
XBSNUL Null record keys not indexed

KEY IAN Higher level index area number
KEY IFL Index bucket fill factor
KEY KNM Key name buffer address
KEY LAN Lowest index level area number

(Continued on next page)

OPERATION MACRO DESCRIPTIONS

SCREATE MACRO

Table 5-5 (Cont.): CREATE Input Fields

Block Field

Description

KEY
KEY
KEY
KEY
KEY
NAM
NAM
NAM
NAM
PRO
PRO
SUM

NUL
NXT
POS
REF
SI1Z
ESA
DID
DVI
ESS
NXT
PRO
NXT

Null key character

Next XAB address

Key segment positions

Index reference number

Key segment sizes (bytes)
Expanded string buffer address
Directory identifier

Device identifier

Expanded string buffer size (bytes)
Next XAB address

File protection code

Next XAB address

Table 5-6: CREATE Output Fields

Block Field

Description

ALL
FAB
FAB

FAB
FAB
FAB
NAM
NAM
NAM
NAM
NAM

NAM

ALQ
ALQ
DEV

IFI
STS
STV
DID
DVI
ESL
FID
FNB

RSL

Initial area allocation size (blocks)
Initial file allocation size (blocks)
Device characteristic mask

FBSCCL Carriage-control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBS$SDI Single-directory device
FBSSQD Sequential device
FBSTRM Terminal device

Internal file identifier
Completion status code
Completion status value
Directory identifier

Device identifier

Expanded string length (bytes)
File identifier

File specification mask

NBSNOD Node in file string or default string
NBSDEV Device in file string or default string

NBSDIR Directory in file string or default

NBSQUO Quoted string in file string or
string

NBSNAM File name in file string or default

NBSTYP File type in file string or default

NBSVER File version in file string or
string

string
default

string
string
default

NBSWDI Wildcard directory in file string or

default string

NBSWNA Wildcard file name in file string or

default string

NBSWTY Wildcard file type in file string or

default string

NBSWVE Wildcard file version 1in file string or

default string

NBSWCH Wildcard context established (cleared)

Resultant string length (bytes) (cleared)

OPERATION MACRO DESCRIPTIONS
SDELETE MACRO

5.4 $DELETE MACRO

The S$DELETE macro calls the DELETE operation routine to remove a
record from a relative or indexed file. The target of the DELETE
operation is the current record. The current record must be locked;
it was automatically locked when the current-record context was set,
but you must not have unlocked it with a FREE operation.

If the stream has no current-record context, or if the current record
is not locked, the DELETE operation returns an error completion.

FORMAT
The format for the SDELETE is:
SDELETE rabaddr|[,[erraddr] [,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the DELETE operation.

OPTIONS

Internal Stream Identifier

The DELETE operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Fast Deletion (Indexed File)

If the file is an indexed file, and if its alternate indexes allow
duplicate keys, then you can speed up the DELETE operation by using
the fast-deletion procedure. However, this procedure 1is faster
because it deletes only those alternate index pointers that it must;
future retrieval operations may be slowed by the presence of undeleted
alternate index pointers.

To use the fast-deletion procedure with the DELETE operation, set the
RBSFDL mask in the 1l-word ROP field of the RAB. If you do not set
this mask, the DELETE operation does not use the fast-deletion
procedure.

Asynchronous Operation

If you want to execute the DELETE operation asynchronously, set the
RBSASY mask in the 1-word ROP field of the RAB; 1if you do not set
this mask, the DELETE operation executes synchronously. (Your program
must also have given the ASYN argument to the RABS$B macro that
declared the RAB for the asynchronous operation.)

OPERATION MACRO DESCRIPTIONS
SDELETE MACRO
STREAM CONTEXT

The current-record context after a DELETE operation is undefined; the
next-record context is unchanged.

RETURNED VALUES

Completion Status and Value
The DELETE operation returns completion status in the l-word STS field

of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS
Table 5-7 lists control block fields that are input to the DELETE

operation. Table 5-8 1lists control block fields that are output by
the DELETE operation.

Table 5-7: DELETE Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB ROP Record processing option mask

RBSASY Asynchronous operation
RBSFDL Fast deletion

Table 5-8: DELETE Output Fields

Block Field Description

RAB STS Completion status code
RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SDISCONNECT MACRO
5.5 SDISCONNECT MACRO
The S$DISCONNECT macro calls the DISCONNECT operation routine to
terminate a stream and disconnect it, releasing the internal resources
it was using. The stream context is lost; you cannot reestablish the
same stream context by reconnecting the stream with the CONNECT
operation.
FORMAT
The format for the SDISCONNECT is:
SDISCONNECT rabaddr(,[erraddr] [,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the DISCONNECT operation.
OPTIONS

Internal Stream Identifier

The DISCONNECT operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Asynchronous Operation

If you want to execute the DISCONNECT operation asynchronously, set
the RBS$SASY mask in the l-word ROP field of the RAB; if you do not set
this mask, the DISCONNECT operation executes synchronously. (Your
program must also have given the ASYN argument to the RABS$B macro that
declared the RAB for the asynchronous operation.)

STREAM CONTEXT

The DISCONNECT operation terminates the stream; therefore there is no
stream context after the DISCONNECT operation.

RETURNED VALUES

Internal Stream Identifier (Cleared)

The DISCONNECT operation clears the internal stream identifier from
the l1-word ISI field of the RAB.

Completion Status and Value

The DISCONNECT operation returns completion status in the 1l-word STS
field of the RAB and returns a completion value in the l-word STV
field of the RAB. Appendix A 1lists completion status symbols and
values.

OPERATION MACRO DESCRIPTIONS
SDISCONNECT MACRO

CHECKLISTS

Table 5-9 lists control block fields that are input to the DISCONNECT
operation. Table 5-10 lists control block fields that are output by
the DISCONNECT operation.

Table 5-9: DISCONNECT Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB ROP Record processing option mask

RBSASY Asynchronous operation

Table 5-10: DISCONNECT Output Fields

Block Field Description

RAB ISI Internal stream identifier
RAB STS Completion status code
RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SDISPLAY MACRO

5.6 S$DISPLAY MACRO

The $DISPLAY macro calls the DISPLAY operation routine to write values
into control block fields. The DISPLAY operation does not alter the
file in any way.

When you use the OPEN operation to open a file, you might not know how
many areas or how many indexes the file has. If, however, you supply
a SUM block for the OPEN operation, the OPEN operation writes the
number of areas and number of keys (indexes) in its fields. You can
then supply ALL blocks and KEY blocks so that the DISPLAY operation
can fill their fields with values describing the file areas and
indexes.

FORMAT
The format for the SDISPLAY is:
SDISPLAY fabaddr(,[erraddr] [,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS
You must supply a FAB for the DISPLAY operation.

If the file is an indexed file, for each ALL block that you supply,
the DISPLAY operation fills 1its fields with values describing the
corresponding area (if any) of the file. You need not supply an ALL
block for every area of the file. Note that if the file was opened
for block access, no information is returned in ALL blocks.

For each KEY block that you supply, the DISPLAY operation fills its
fields with values describing the corresponding index (if any) for the
file. You need not supply a KEY block for every index of the file.
Note that 1if the file was opened for block access, no information is
returned in KEY blocks.

If you supply a PRO block for a disk file, the DISPLAY operation fills
its fields with values showing the owner and protection for the file.

If you supply a DAT block for a disk file, the DISPLAY operation fills
its fields with values showing the creation date, expiration date,
revision date, and revision number for the file.

If you supply a SUM block for a relative or indexed file, the DISPLAY
operation fills its fields with values showing the number of areas and
indexes for the file, and with its prologue version number. (If you
are opening the file for block access, the DISPLAY operation returns
the number of areas and number of keys as 0, and does not return the
prologue version number.)

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the DISPLAY
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

OPERATION MACRO DESCRIPTIONS
SDISPLAY MACRO

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the 1index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.

OPTIONS

Internal File Identifier

The DISPLAY operation reads the internal file identifier from the
l-word 1IFI field of the FAB. This is the value that was written when
the file was opened by the CREATE or OPEN operation.

Key Name Buffer

If you want the key name string for an index returned to a buffer,
supply a KEY block for the index; specify the address of a 32-byte
buffer in the l-word KNM field of the KEY block. 1If you do not supply
a KEY block for an index, or if you specify 0 in its KNM field, the
DISPLAY operation does not return the key name string.

STREAM CONTEXT

The DISPLAY operation does not affect stream context.

RETURNED VALUES

Area Descriptions

For each ALL block that you supply, the DISPLAY operation writes a
description in its fields of the corresponding area of the file. Area
0 is described in the ALL block containing 0 in its AID field; area 1
is described 1in the ALL block containing 1 in its AID field; and so
forth.

The DISPLAY operation writes three sizes for a file area: the size
(in blocks) of the unused portion of the area in the 2-word ALQ field
of the ALL block, the default area extension size (in blocks) in the
l-word DEQ field of the ALL block, and the area bucket size (in
blocks) in the 1l-byte BKZ field of the ALL block.

The DISPLAY operation clears the l-byte AOP field of the ALL block and
the 1-byte ALN field of the ALL block.

Key Descriptions

For each KEY block that you supply, the DISPLAY operation writes a
description in its fields of the corresponding index of the file. The
primary index is described in the KEY block containing 0 in its REF
field; the first alternate index 1is described 1in the KEY block
containing 1 in its REF field; and so forth.

OPERATION MACRO DESCRIPTIONS
S$DISPLAY MACRO

The DISPLAY operation writes the key data type code in the l-byte DTP
field of the KEY block. The symbols for key data type codes are:

XB$BN2 16-bit unsigned integer
XBSBN4 32-bit unsigned integer
XBSIN2 15-bit signed integer
XBSIN4 31-bit signed integer
XBSPAC Packed decimal number
XB$STG String

The DISPLAY operation writes key segment information for the index:
the number of key segments in the l-byte NSG field of the KEY block,
and the total key size (sum of segments, in bytes) in the 1l-byte TKS
field of the KEY block.

The DISPLAY operation writes the sizes of key segments in the 8-byte
SIZ field of the KEY block. The size (in bytes) of the first key
segment is in the first byte of the SI1Z field, the size of the second
segment is in the second byte of the SIZ field, and so forth. If the
key has fewer than eight segments, the first byte containing 0
indicates the number of key segments.

The DISPLAY operation writes the positions of key segments in the
8-word POS field of the KEY block. The position (leftmost position is
0) of the first key segment is in the first word of the POS field, the
position of the second segment is in the second word of the POS field,
and so forth., If the key has fewer than eight segments, the remaining
words of the POS field contain unpredictable values.

The DISPLAY operation writes a key-characteristics mask in the 1l-byte
FLG field of the KEY block. The symbols for key-characteristics masks
are:

XBSCHG Record key changes allowed on update
XB$SDUP Duplicate record keys allowed
XBSINI No entries yet made in index
XB$NUL Null record keys not indexed

The DISPLAY operation writes the null-key character in the l-byte NUL
field of the KEY block. This character is meaningful only if the
XBSNUL mask in the l-byte FLG field of the KEY block is set and the
DISPLAY operation returns the XBSSTG code in the l-byte DTP field of
the KEY block (indicating a string key).

The DISPLAY operation writes area numbers for the index: the area for
the data level in the 1l-byte DAN field of the KEY block, the area for
the lowest index level in the l-byte LAN field of the KEY block, and
the area for higher index levels in the l-byte IAN field of the KEY
block.

The DISPLAY operation writes bucket fill numbers for the index areas:
the £fill number for the data area in the l-word DFL field of the KEY
block, and the fill number for the index areas in the l-word IFL field
of the KEY block.

The DISPLAY operation writes bucket sizes for index areas: the data
area bucket size (in blocks) in the l-byte DBS field of the KEY block,
and the index area bucket size (in blocks) in the l-byte IBS field of
the KEY block.

The DISPLAY operation writes wvirtual block numbers for the index
areas: the virtual block number for the first data bucket in the
2-word DVB field of the KEY block, and the virtual block number of the
root index bucket in the 2-word RVB field of the KEY block.

OPERATION MACRO DESCRIPTIONS
$DISPLAY MACRO

The DISPLAY operation writes the number of levels in the index (not
including the data level) in the l-byte LVL field of the KEY block.

The DISPLAY operation writes the minimum size (in bytes) of a record
that contains the key for the index in the l-word MRL field of the KEY
block.

File Owner and Protection (Disk File)

If the file is a disk file, and if you supply a PRO block, the DISPLAY
operation writes the project (or group) portion of the file owner code
in the l-word PRJ field of the PRO block, the programmer (or member)
portion of the file owner c¢ode in the l-word PRG field of the PRO
block, and the file protection code in the l-word PRO field of the PRO
block.

File Dates

If you supply a DAT block for a disk file, the DISPLAY operation
writes four values in its fields: the creation date in the 4-word CDT
field of the DAT block, the expiration date in the 4-word EDT field of
the DAT Dblock, the revision date in the 4-word RDT field of the DAT
block, and the revision number (number of times the file has been
write-accessed and then closed) in the l1-word RVN field of the DAT
block.

File Summary Information

If you supply a SUM block, the DISPLAY operation writes three values
in its fields: the number of file areas in the 1l-byte NOA field of
the SUM block, the number of file indexes in the l-byte NOK field of
the SUM block, and the prologue version number (for a relative or
indexed file) in the l-word PVN field of the SUM block.

Completion Status and Value

The DISPLAY operation returns completion status in the 1l-word STS
field of the FAB and returns a completion value in the l-word STV
field of the FAB. Appendix A 1lists completion status symbols and
values.

CHECKLISTS

Table 5-11 lists control block fields that are input to the DISPLAY
operation. Table 5-12 lists control block fields that are output by
the DISPLAY operation.

OPERATION MACRO DESCRIPTIONS

Table 5-11: DISPLAY Input Fields

SDISPLAY MACRO

Block Field

Description

ALL
ALL
DAT
FAB
FAB
KEY
KEY
KEY
PRO
SUM

AID
NXT
NXT
IFI
XAB
NXT
KNM
REF
NXT
NXT

Area number
Next XAB address
Next XAB address

Internal file identifier
XAB address

Next XAB address

Key name buffer address
Index reference number
Next XAB address

Next XAB address

Table 5-12: DISPLAY Output Fields

Block Field

Description

ALL
ALL
ALL

ALL
ALL
DAT
DAT
DAT
DAT
FAB
FAB
KEY
KEY
KEY
KEY

KEY
KEY

ALN
ALQ
AOP

BKZ
DEQ
CDT
EDT
RDT
RVN
STS
STV
DAN
DBS
DFL
DTP

DVB
FLG

Area alignment mask (cleared)
Unused area allocation size (blocks)
Area option mask

XBSCTG
XBSHRD

Contiguous area (cleared)
Hard area location (cleared)

Area bucket size (blocks)

Area default extension size (blocks)
File creation date

File expiration date

File revision date

File revision number
Completion status code
Completion status value

Data area number

Data area bucket size (blocks)
Data bucket fill factor

Key data type code

XBSBN2 16-bit unsigned integer
XBS$BN4 32-bit unsigned integer
XBSIN2 15-bit signed integer
XBSIN4 31-bit signed integer
XBSPAC Packed decimal number
XB$SSTG String

First data bucket virtual block number
Index option mask

XBSCHG Record key changes allowed on update
XBSDUP Duplicate record keys allowed

XBSINI No entries yet made in index

XBSNUL Null record keys not indexed

(Continued on next page)

OPERATION MACRO DESCRIPTIONS

$DISPLAY MACRO

Table 5-12 (Cont.): DISPLAY Output Fields

Block Field

Description

KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
KEY
PRO
PRO
PRO
SUM
SUM
SUM

IAN
IBS
IFL
LAN
LVL
MRL
NSG
NUL
POS
RVB
SI1Z
TKS
PRG
PRJ
PRO
NOA
NOK
PVN

Higher level index area number

Index area bucket size (blocks)

Index bucket fill factor

Lowest index level area number

Number of index levels (not including data level)
Minimum length of record containing key (bytes)
Key segment count

Null key character

Key segment positions

Root index bucket virtual block number

Key segment sizes (bytes)

Total key size (sum of key segment sizes) (bytes)
Programmer or member portion of file owner code
Project or group portion of file owner code

File protection code

Number of areas

Number of indexes

Prologue version number

OPERATION MACRO DESCRIPTIONS
SENTER MACRO
5.7 S$ENTER MACRO
The $ENTER macro calls the ENTER operation routine to insert a file
name into a directory file.
FORMAT
The format for the SENTER is:
SENTER fabaddr([,[erraddr][,sucaddr]]
where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.
CONTROL BLOCKS
You must supply a FAB for the ENTER operation.
You must supply a NAM block for the ENTER operation.

To supply a NAM block for the ENTER operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the ENTER
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.

OPTIONS

File Specification

The ENTER operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).
RMS-11 defaults are:

e Device -- The device to which the specified logical channel is
assigned, or SY: if the specified logical channel is not
assigned to any device.

® Directory -- The current directory for the task.

e Name, type, version -- Defaulted to null.

OPERATION MACRO DESCRIPTIONS
SENTER MACRO

The file string and the default string must not contain wildcards.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the 1l-byte FNS
field of the FAB; if you specify 0 in the FNS field, the ENTER
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
l-byte DNS field of the FAB; if you specify 0 in the DNS field, the
ENTER operation uses no default string.

If you set the FBSFID mask in the l-word FOP field of the FAB and
supply a NAM Dblock, the ENTER operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

In the same circumstance, the ENTER operation reads the directory
identifier from the 3-word DID field of the NAM block; 1if this value
is nonzero, the specified directory overrides the directory in the
merged string.

You must provide a NAM block for the ENTER operation, and must provide
a valid file identifier 1in the 3-word FID field of the NAM block.
This identifier specifies the file for which the entry (name, type,
and version) will be created in the target directory.

Expanded String Buffer

If you want the ENTER operation to return the expanded string for the
created file, provide a buffer for the string. Specify the address of
the expanded string buffer in the l-word ESA field of the NAM block.
Specify the size (in bytes) of the expanded string buffer in the
l-byte ESS field of the NAM block; if you specify 0 in the ESS field,
the ENTER operation does not return the expanded string.

Private Buffer Pool

If you want the ENTER operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and its size
(in Dbytes) 1in the l-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the ENTER
operation uses the central buffer pool.

Logical Channel

Specify the logical channel for the ENTER operation in the l-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
0.

OPERATION MACRO DESCRIPTIONS
SENTER MACRO

RETURNED VALUES

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields 1in the NAM block), the ENTER operation writes the file
specification for the target file in this buffer, and writes the
length (in bytes) of the specification string in the l-byte ESL field
of the NAM block.

Device Characteristics

The ENTER operation returns device characteristics as masks in the
l-byte DEV field of the FAB. The device characteristics are:

® Printer or terminal (indicated by the set FBSCCL mask in the
l-byte DEV field of the FAB and the set FBSREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask
in the 1l-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

® Unit-record device (indicated by the set FBSREC mask in the
l-byte DEV field of the FAB).

e Non-ANSI magtape or cassette tape (indicated by the set FB$SDI
mask in the 1-byte DEV field of the FAB and the set FBSREC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

e ANSI-format magtape (indicated by the set FBSSQD mask in the
l-byte DEV field of the FAB).

Device and Directory Identifiers

The ENTER operation returns the device identifier for the target file
in the 2-word DVI field of the NAM block and the directory identifier
in the 3-word DID field of the NAM block.

File Specification Characteristics

The ENTER operation sets masks in the l-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

OPERATION MACRO DESCRIPTIONS
SENTER MACRO

Wildcarding

The ENTER operation clears the NBSWCH mask in the l-word FNB field of
the NAM block and the l-byte RSL field of the NAM block; this shows
that no wildcard context exists and that no resultant string was
returned.

Completion Status and Value

The ENTER operation returns completion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-13 lists control block fields that are input to the ENTER

operation. Table 5-14 lists control block fields that are output by
the ENTER operation.

Table 5-13: ENTER Input Fields

Block Field Description

ALL NXT Next XAB address

DAT NXT Next XAB address

FAB BPA Private buffer pool address

FAB BPS Private buffer pool size (bytes)
FAB DNA Default string address

FAB DNS Default string size (bytes)

FAB FNA File string address

FAB FNS File string size (bytes)

FAB FOP File processing option mask

FBSFID Use information in NAM block

FAB LCH Logical channel number

FAB NAM NAM block address

KEY NXT Next XAB address

NAM DID Directory identifier

NAM DVI Device identifier

NAM Esa Expanded string buffer address

NAM ESS Expanded string buffer size (bytes)
NAM FID File identifier

PRO NXT Next XAB address

SUM NXT Next XAB address

OPERATION MACRO DESCRIPTIONS
SENTER MACRO

Table 5-14: ENTER Output Fields

Block Field Description

FAB DEV Device characteristic mask

FBS$CCL Carriage-control device
FB$SMDI Multidirectory device
FBSREC Record-oriented device
FBS$SDI Single-directory device
FBSSQD Sequential device
FBSTRM Terminal device

FAB STS Completion status code

FAB STV Completion status value

NAM DID Directory identifier

NAM DVI Device identifier

NAM ESL Expanded string length (bytes)
NAM FNB File specification mask

NBS$SNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default
string

NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default
string

NBSWDI Wildcard directory in file string or
default string

NBSWNA Wildcard file name 1in file string or
default string

NBSWTY Wildcard file type in file string or
default string

NBSWVE Wildcard file version in file string or
default string

NBSWCH Wildcard context established (cleared)

NAM RSL Resultant string length (bytes) (cleared)

OPERATION MACRO DESCRIPTIONS
$ERASE MACRO

5.8 S$ERASE MACRO

The $SERASE macro calls the ERASE operation routine to erase a file and
delete its directory entry. Note that erasing a file marks the file
for deletion, but does not necessarily erase the file immediately;
the file is erased when it has no accessing programs. The allocation
for the file is released for use in other files.

FORMAT
The format for the SERASE is:
SERASE fabaddr|[, [erraddr] [,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS
You must supply a FAB for the ERASE operation.

If you supply a NAM block and specify wildcarding, the ERASE operation
reads the address and length of the expanded string from NAM block
fields; 1if you supply a NAM block and specify erase by NAM block, the
ERASE operation reads NAM block fields to obtain identifiers for the
target file.

To supply a NAM block for the ERASE operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the ERASE
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the 1index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.
OPTIONS

File Specification (Nonwildcard ERASE Operation)

The ERASE operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).

OPERATION MACRO DESCRIPTIONS
SERASE MACRO

RMS-11 defaults are:

® Device -- The device to which the specified logical channel is
assigned, or SY: if the specified logical channel is not
assigned to any device.

e Directory -- The current directory for the task.
e Name, type, version -- Defaulted to null.
The file string and the default string must not contain wildcards.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the l-byte FNS
field of the FAB; 1if you specify 0 1in the FNS field, the ERASE
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
l-byte DNS field of the FAB; if you specify 0 in the DNS field, the
ERASE operation uses no default string.

If you set the FBSFID mask in the l-word FOP field of the FAB and
supply a NAM block, the ERASE operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

In the same circumstance, the ERASE operation reads the directory
identifier from the 3-word DID field of the NAM block; if this value
is nonzero, the specified directory overrides the directory in the
merged string.

In the same circumstance, the ERASE operation reads the file
identifier from the 3-word FID field of the NAM block; if this value
is nonzero, the specified file overrides any directory, name, type,
and version elements previously obtained, and the file is erased
without removing any directory entry that may exist for it.

Erase by Wildcard Specification

You can use the ERASE operation in a wildcarding program 1loop. (The
NBSWCH mask in the l-word FNB field of the NAM block will already have
been set by an earlier PARSE operation.)

If you set the FBSFID mask in the l-word FOP field of the FAB, the
file found by a previous SEARCH operation and its directory entry are
deleted, but all fields relevant to wildcard context are preserved
(for possible subsequent SEARCH operations).

If you clear the FBSFID mask in the l-word FOP field of the FAB, the
ERASE operation first performs an implicit SEARCH operation. (The
input and output fields for the SEARCH operation are not described
here and are not 1included 1in the checklists at the end of this
section.)

If the SEARCH operation finds a file that matches the wildcard file
specification, the ERASE operation erases its contents and deletes its
directory entry; if not, the ERASE operation does not erase the file
contents or delete 1its directory entry, but instead passes control
block data from the SEARCH operation (in particular, the ERSNMF
completion status code and the cleared NBSWCH mask in the l-word FNB
field of the NAM block).

OPERATION MACRO DESCRIPTIONS
SERASE MACRO

Expanded String Buffer

If you erase a file by its file specification, and 1if you want the
ERASE operation to return the expanded string for the erased file,
provide a buffer for the string. Specify the address of the expanded
string buffer in the l-word ESA field of the NAM block. Specify the
size (in bytes) of the expanded string buffer in the l-byte ESS field
of the ©NAM block; if you specify 0 in the ESS field, the ERASE
operation does not return the expanded string.

Private Buffer Pool

If you want the ERASE operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and its size
(in bytes) in the l-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the ERASE
operation uses the central buffer pool.

Logical Channel

Specify the logical channel for the ERASE operation in the 1l-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
0.

RETURNED VALUES

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields in the NAM block), the ERASE operation writes the expanded
string for the erased file in the buffer, and writes the 1length (in
bytes) of the string in the l-byte ESL field of the NAM block.

Device, Directory, and File Identifiers

If you supply a NAM block, the ERASE operation writes a device
identifier in the 2-word DVI field of the NAM block, a directory
identifier in the 3-word DID field of the NAM block (unless directory
processing was bypassed due to use of the file identifier on input),
and a file identifier in the 3-word FID field of the NAM block.

Device Characteristics

The ERASE operation returns device characteristics as masks in the
l-byte DEV field of the FAB. The device characteristics are:

e Printer or terminal (indicated by the set FBSCCL mask in the
l-byte DEV field of the FAB and the set FBS$REC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask

in the 1l-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

5-42

OPERATION MACRO DESCRIPTIONS
SERASE MACRO

® Unit-record device (indicated by the set FBSREC mask 1in the
l-byte DEV field of the FAB).

e Non-ANSI magtape or cassette tape (indicated by the set FB$SDI
mask in the 1l-byte DEV field of the FAB and the set FBS$REC
mask in the l-byte DEV field of the FAB); RMS~11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

® ANSI-format magtape (indicated by the set FB$SQD mask in the
l-byte DEV field of the FAB).

Wildcard Context

A nonwildcard ERASE operation clears the NBSWCH mask in the l-word FNB
field of the NAM block and the l-byte RSL field of the NAM block;
this shows that no wildcarding is in progress and that no resultant
string was returned.

File Specification Characteristics

The ERASE operation sets masks in the l-word FNB field of +the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBS$QUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

Completion Status and Value

The ERASE operation returns completion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-15 lists control block fields that are input to the ERASE

operation. Table 5-16 lists control block fields that are output by
the ERASE operation.

OPERATION MACRO DESCRIPTIONS
SERASE MACRO

Table 5-15: ERASE Input Fields

Block Field Description

ALL NXT Next XAB address

DAT NXT Next XAB address

FAB BPA Private buffer pool address

FAB BPS Private buffer pool size (bytes)
FAB DNA Default string address

FAB DNS Default string size (bytes)

FAB FNA File string address

FAB FNS File string size (bytes)

FAB FOP File processing option mask

FBSFID Use information in NAM block

FAB LCH Logical channel number

FAB NAM NAM block address

KEY NXT Next XAB address

NAM DID Directory identifier

NAM DVI Device identifier

NAM ESA Expanded string buffer address
NAM ESS Expanded string buffer size (bytes)
NAM FID File identifier

NAM FNB File specification mask

PRO NXT Next XAB address

SUM NXT Next XAB address

NBSWCH Wildcard context established

Table 5-16: ERASE Output Fields

Block Field Description

FAB DEV Device characteristic mask

FBSCCL Carriage-control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBS$SDI Single-directory device
FBSSQD Sequential device
FBSTRM Terminal device

FAB STS Completion status code

FAB STV Completion status value

NAM DID Directory identifier

NAM DVI Device identifier

NAM ESL Expanded string length (bytes)
NAM FID File identifier

(Continued on next page)

5-44

OPERATION MACRO DESCRIPTIONS
SERASE MACRO

Table 5-16 (Cont.): ERASE Output Fields

Block Field

Description

NAM

NAM

FNB

RSL

File specification mask

NBSNOD
NBSDEV
NBSDIR
NBSQUO
NBSNAM
NBSTYP
NBSVER
NBSWDI
NBSWNA
NBSWTY
NBSWVE

NBSWCH

Node in file string or default string
Device in file string or default string
Directory in file string or default string
Quoted string in file string or default
string

File name in file string or default string
File type in file string or default string
File version in file string or default
string

Wildcard directory in file string or
default string

Wildcard file name in file string or
default string

Wildcard file type 1in file string or
default string

Wildcard file version in file string or
default string

Wildcard context established

Resultant string length (bytes)

OPERATION MACRO DESCRIPTIONS
SEXTEND MACRO

5.9 S$EXTEND MACRO

The SEXTEND macro calls the EXTEND operation routine to extend the
allocation for an open file.

FORMAT
The format for the SEXTEND is:
SEXTEND fabaddr([,[erraddr][,sucaddr]]}

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS
You must supply a FAB for the EXTEND operation.

For each ALL block that you supply, the EXTEND operation extends the
corresponding area as described in the ALL block. You need not supply
an ALL block for an area that you do not want to extend, but each
supplied ALL block must correspond to an area in the file; this means
that you can supply ALL blocks for areas other than area 0 only for an
indexed file opened for record access.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the EXTEND
operation, specify the address of the first XAB in the 1l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l1-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.

OPTIONS

Internal File Identifier

The EXTEND operation reads the 1internal file identifier from the
l-word 1IFI field of the FAB. This is the value written by the CREATE
or OPEN operation that opened the file.

Area 0 Extended by FAB

I1f you supply no ALL blocks, specify the size (in blocks) of the
extension in the 2-word ALQ field of the FAB.

If you want the extension to be contiguous within itself (it will not
necessarily be contiguous with the file), set the FBSCTG mask in the
l-word FOP field of the FAB; if you do not set this mask, the
extension is not necessarily contiguous within itself.

5-46

OPERATION MACRO DESCRIPTIONS
SEXTEND MACRO

Areas Extended by ALL Blocks

If you supply ALL blocks, the EXTEND operation ignores the ALQ field
of the FAB, and extends each area specified in an ALL block. Specify
each area to be extended by supplying an ALL block with the area
number in the l-byte AID field of the ALL block. Specify the size of
the extension (in blocks) for the area in the 2-word ALQ field of the
ALL block.

If you want the area extension to be contiguous within itself (it will
not be contiguous with the previous area extent), set the XBSCTG mask
in the l-byte AOP field of the ALL block. If you do not set this
mask, the extension will not necessarily be contiguous within itself.

If you want to place the extension at a specific location, specify an
alignment mask in the 1l-byte ALN field of the ALL block; 1if you
specify 0, the EXTEND operation places the extension at any convenient
location. The symbols for alignment masks are:

XBSLBN Logical block alignment
XBSVBN Virtual block alignment

Specify the number of the logical block or virtual block in the 2-word
LOC field of the ALL block.

If you specify logical block alignment, and if you want the extension
placed only at the location you specify, set the XB$SHRD mask in the
l-byte AOP field of the ALL block. If you do not set this mask, the
EXTEND operation selects an alternate 1location 1if the specified
location is not available. If you do set this mask, the EXTEND
operation returns an error completion if the specified location is not
available.

STREAM CONTEXT

The EXTEND operation does not affect stream context.

RETURNED VALUES

Extension Sizes

The EXTEND operation returns the size (in blocks) of each extension it
makes. If you extended only area O using FAB fields, the EXTEND
operation writes the size of the extension in the 2-word ALQ field of
the FAB. 1If you extended areas using ALL blocks, the EXTEND operation
writes the size of each area extension in the 2-word ALQ field of the
ALL block for the area.

Completion Status and Value

The EXTEND operation returns completion status in the l-word STS field
of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-17 lists control block fields that are input to the EXTEND

operation. Table 5-18 lists control block fields that are output by
the EXTEND operation.

OPERATION MACRO DESCRIPTIONS

SEXTEND MACRO

Table 5-17: EXTEND Input Fields

Block Field

Description

ALL
ALL

ALL
ALL

ALL
ALL
DAT
FAB
FAB

FAB
FAB
KEY
PRO
KEY
SUM

AID
ALN

ALQ
AOP

LOC
NXT
NXT
ALQ
FOP

IFI
XAB
NXT
NXT
REF
NXT

Area number
Area extension alignment request

XBSLBN Logical block alignment
XBSVBN Virtual block alignment

Area allocation extension request size (blocks)
Area option mask

XBSCTG Contiguous area extension request
XBSHRD Area extension hard location request

Area extension location request

Next XAB address

Next XAB address

File allocation extension request size (blocks)
File processing option mask

FBSCTG Contiguous file extension request

Internal file identifier
XAB address

Next XAB address

Next XAB address

Index reference number
Next XAB address

Table 5-18: EXTEND Output Fields

Block Field

Description

ALL
FAB
FAB
FAB

ALQ
ALQ
STS
STV

Area allocation extension actual size (blocks)
File allocation extension actual size (blocks)
Completion status code

Completion status value

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (SEQUENTIAL ACCESS)

5.10 S$FIND MACRO (SEQUENTIAL ACCESS)
The $FIND macro calls the FIND operation routine to transfer a recc
(or part of a record) from a file to an I/0O buffer. The FI.
operation transfers the entire record 1if the file 1is relative ¢
indexed, or if it has blocked records; it may transfer only part ot
the record if the record spans block boundaries. The FIND operation
does not transfer the record to a user buffer.
The target of a sequential-access FIND operation is the next record
(for an indexed file, the next record under the current index).
FORMAT
The format for the $FIND is:

SFIND rabaddr[,[erraddr] [,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FIND operation.

OPTIONS

Internal Stream Identifier

The FIND operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Asynchronous Operation

If you want to execute the FIND operation asynchronously, set the
RBSASY mask in the 1l-word ROP field of the RAB; 1if you do not set
this mask, the FIND operation executes synchronously. (Your program
must also have given the ASYN argument to the RABS$B macro that
declared the RAB for the asynchronous operation.)

Sequential Access

Specify the RBSSEQ code in the 1l-byte RAC field of the RAB.

STREAM CONTEXT

The current-record context after a sequential access FIND operation is
the found record; the next-record context is the record following the
found record (for an indexed file, the next record under the current
index). If the FIND operation returns an error completion, the
current-record context is undefined, and the next-record context is
unchanged.

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (SEQUENTIAL ACCESS)

RETURNED VALUES

RRN

For a relative file or for a sequential disk file with fixed-length
records, a sequential-access FIND operation returns the relative
record number (RRN) for the found record in the 2-word BKT field of
the RAB.

RFA

The FIND operation returns the record file address (RFA) for the found
record in the 3-word RFA field of the RAB.

Completion Status and Value

The FIND operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-19 lists control block fields that are input to the FIND

operation. Table 5-20 lists control block fields that are output by
the FIND operation,

Table 5-19: FIND (Sequential Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB RAC Record access code

RBSSEQ Sequential access
RAB ROP Record processing option mask

RBSASY Asynchronous operation

Table 5-20: FIND (Sequential Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RFA Record file address

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (KEY ACCESS)

5.11 SFIND MACRO (KEY ACCESS)

The S$FIND macro calls the FIND operation routine to transfer a record
(or part of a record) from a sequential disk file (with fixed-length
records), a relative file, or an indexed file to an I/0 Dbuffer, The
FIND operation transfers the entire record if the file is relative or
indexed, or if it has blocked records; it may transfer only part of
the record if the record spans block boundaries. The FIND operation
does not transfer the record to a user buffer.

The target of a key-access FIND operation is the record having the
specified key (under the specified match criterion). For a relative
file or for a sequential disk file with fixed-length records, the key
is a relative record number (RRN); for an indexed file, the key is an
index key under the specified index.
FORMAT
The format for the $FIND is:

SFIND rabaddr(,[erraddr][,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FIND operation.

OPTIONS

Internal Stream Identifier

The FIND operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Asynchronous Operation

If you want to execute the FIND operation asynchronously, set the
RBSASY mask in the 1l-word ROP field of the RAB; if you do not set
this mask, the FIND operation executes synchronously. (Your program
must also have given the ASYN argument to the RABS$B macro that
declared the RAB for the asynchronous operation.,)

Key Access

Specify the RBSKEY code in the 1l-byte RAC field of the RAB.

Key of Reference (Indexed File)

Specify the key of reference in the l-byte KRF field of the RAB. The
key of reference is the reference number (REF field of KEY block) for
the index you want to use for the FIND operation.

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (KEY ACCESS)

Key

Specify a buffer containing the key for the record to be found:
specify the address of the key buffer in the l-word KBF field of the
RAB, and specify the size of the key in the l-byte KSZ field of the
RAB.

For a relative file, or for a sequential file with fixed-length
records, specify a 4-byte binary relative record number (RRN) as the
key, and specify the key size as 0 or 4.

For an indexed file, specify a key of the same type as the key for the
current index, and specify a key size no greater than the key size for
the current index. For a nonstring key, the specified key size must
be the key size defined for the index (or, equivalently, 0); for a
string key, if you specify a key size smaller than the key size for
the index, the FIND operation searches for a record whose key begins
with the specified partial key (under the specified key criterion).

Key Criterion

Specify a key-criterion mask in the l-word ROP field of the RAB. The
symbols for key-criterion masks are:

RBSKGE Greater-than-or-equal key criterion
RBSKGT Greater-than key criterion

If you specify the key-greater criterion, the FIND operation searches
for the first record whose key is greater than the key you specify;
if you specify the key-greater-or-equal criterion, the FIND operation
searches for the first record whose key is greater than or equal to
the key you specify; if vyou specify neither criterion, the FIND
operation searches for a record whose key exactly matches the key you
specify. (It is illegal to specify both criteria.)

STREAM CONTEXT
The current-record context after a key access FIND operation is the
found record; the next-record context 1is unchanged. If the FIND

operation returns an error completion, the current-record context is
undefined, and the next-record context is unchanged.

RETURNED VALUES

RFA

The FIND operation returns the record file address (RFA) for the found
record in the 3-word RFA field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, the FIND operation returns the RRN of the found record in the
2-word BKT field of the RAB.

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (KEY ACCESS)

Completion Status and Value
The FIND operation returns completion status in the l-word STS field

of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS
Table 5-21 lists control block fields that are input to the FIND

operation. Table 5-22 lists control block fields that are output by
the FIND operation.

Table 5-21: FIND (Key Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB KBF Key buffer address

RAB KRF Key of reference

RAB KSZ Key size (bytes)

RAB RAC Record access code

RBSKEY Key access
RAB ROP Record processing option mask
RBSASY Asynchronous operation

RBSKGE Greater-than-or-equal key criterion
RBSKGT Greater-than key criterion

Table 5-22: FIND (Key Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RFA Record file address

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (RFA ACCESS)
5.12 SFIND MACRO (RFA ACCESS)
The $FIND macro calls the FIND operation routine to transfer a record
(or part of a record) from a file to an I/0 buffer. The FIND
operation transfers the entire file 1if the file 1is relative or
indexed, or if it has blocked records; it may transfer only part of
the record if the record spans block boundaries. The FIND operation
does not transfer the record to a user buffer.
The target of an RFA-access FIND operation is the record having the
record file address (RFA) you specify.
FORMAT
The format for the S$FIND is:

SFIND rabaddr[,[erraddr] [,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FIND operation.

OPTIONS

Internal Stream Identifier

The FIND operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Asynchronous Operation

If you want to execute the FIND operation asynchronously, set the
RBSASY mask in the 1-word ROP field of the RAB; if you do not set
this mask, the FIND operation executes synchronously. (Your program
must also have given the ASYN argument to the RABS$B macro that
declared the RAB for the asynchronous operation.)

RFA Access

Specify the RBSRFA code in the l-byte RAC field of the RAB.

RFA

Specify the RFA for the record to be found in the 3-word RFA field of
the RAB.

STREAM CONTEXT

The current-record context after an RFA access FIND operation 1is the
found record (for an indexed file, 1in the context of the primary
index); the next-record context is unchanged. 1If the FIND operation
returns an error completion, the current-record context is undefined,
and the next-record context is unchanged.

5~-54

OPERATION MACRO DESCRIPTIONS
SFIND MACRO (RFA ACCESS)

RETURNED VALUES

RRN

For a relative file or for a sequential disk file with fixed-length
records, the FIND operation returns the RRN of the found record in the
2-word BKT field of the RAB.

Completion Status and Value

The FIND operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-23 lists control block fields that are input to the FIND

operation. Table 5-24 lists control block fields that are output by
the FIND operation.

Table 5-23: FIND (RFA Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB RAC Record access code

RBSRFA RFA access

RAB RFA Record file address
RAB ROP Record processing option mask

RBSASY Asynchronous operation

Table 5-24: FIND (RFA Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB STS Completion status code
RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SFLUSH MACRO
5.13 $FLUSH MACRO
The SFLUSH macro calls the FLUSH operation routine to write any
unwritten buffers for a stream. The FLUSH operation does not affect
stream context, except that the current-record context is undefined
for a following TRUNCATE or UPDATE operation.
Note one special case: if a file was opened for deferred writing
(FBSDFW set in the FOP field of the FAB for the CREATE or OPEN
operation), and was not opened for write sharing (FBSWRI cleared in
the SHR field of the FAB), then a buffer may be controlled by a
different stream, and it will not be written by the FLUSH operation.
FORMAT
The format for the S$FLUSH is:

SFLUSH rabaddr|[,[erraddr] [,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FLUSH operation.
OPTIONS

Internal Stream Identifier

The FLUSH operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Asynchronous Operation

If you want to execute the FLUSH operation asynchronously, set the
RBSASY mask in the 1l-word ROP field of the RAB; 1if you do not set
this mask, the FLUSH operation executes synchronously. (Your program
must also have given the ASYN argument to the RABSB macro that
declared the RAB for the asynchronous operation.)

STREAM CONTEXT

The FLUSH operation does not affect stream context, except that the
current-record context is undefined for a following TRUNCATE or UPDATE
operation.

RETURNED VALUES

Completion Status and Value

The FLUSH operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

OPERATION MACRO DESCRIPTIONS
$FLUSH MACRO

CHECKLISTS

Table 5-25 lists control block fields that are input to the FLUSH
operation. Table ©5-26 lists control block fields that are output by
the FLUSH operation.

Table 5-25: FLUSH Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB ROP Record processing option mask

RBSASY Asynchronous operation

Table 5-26: FLUSH Output Fields

Block Field Description

RAB STS Completion status code
RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SFREE MACRO
5.14 S$FREE MACRO
The S$FREE macro calls the FREE operation routine to free a locked
bucket for a stream. The FREE operation does not affect stream
context, except that the current-record context is wundefined for a
following DELETE, TRUNCATE, or UPDATE operation.
FORMAT
The format for the $FREE is:

SFREE rabaddr|[,[erraddr]{,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the FREE operation.

OPTIONS

Internal Stream Identifier

The FREE operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Asynchronous Operation

If you want to execute the FREE operation asynchronously, set the
RBSASY mask in the 1l-word ROP field of the RAB; 1if you do not set
this mask, the FREE operation executes synchronously. (Your program
must also have given the ASYN argument to the RABS$B macro that
declared the RAB for the asynchronous operation.)

STREAM CONTEXT
The FREE operation does not affect stream context, except that the

current-record context is undefined for a following DELETE, TRUNCATE,
or UPDATE operation.

RETURNED VALUES

Completion Status and Value

The FREE operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB. Appendix A lists completion status symbols and values.

CHECKLISTS
Table 5-27 lists control block fields that are 1input to the FREE

operation. Table 5-28 lists control block fields that are output by
the FREE operation.

OPERATION MACRO DESCRIPTIONS
SFREE MACRO

Table 5-27: FREE Input Fields

Block Field

Description

RAB ISI
RAB ROP

Internal stream identifier
Record processing option mask

RBSASY Asynchronous operation

Table 5-28: FREE Output Fields

Block Field

Description

RAB STS
RAB STV

Completion status code
Completion status value

OPERATION MACRO DESCRIPTIONS
$GET MACRO (SEQUENTIAL ACCESS)
5.15 S$GET MACRO (SEQUENTIAL ACCESS)

The $GET macro calls the GET operation routine to transfer a record
from a file to an I/0 buffer and to a user buffer.

The target of a sequential-access GET operation depends on whether the
previous operation was a FIND operation:

e If the previous operation was a successful FIND operation, the
target of a sequential-access GET operation is the current
record (or the first following record if the current record
was deleted or its key changed in the interim).

e If the previous operation was not a successful FIND operation,
the target of a sequential-access GET operation is the next
record (for an indexed file, the next record under the current
index) .

FORMAT
The format for the S$GET is:

SGET rabaddr|[,[erraddr] [,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the GET operation.

OPTIONS

Internal Stream Identifier

The GET operation reads the internal stream identifier from the l-word
ISI field of the RAB.

Asynchronous Operation

If you want to execute the GET operation asynchronously, set the
RBSASY mask in the 1l-word ROP field of the RAB; if you do not set
this mask, the GET operation executes synchronously. (Your program
must also have given the ASYN argument to the RABSB macro that
declared the RAB for the asynchronous operation.)

Sequential Access

Specify the RBSSEQ code in the l-byte RAC field of the RAB.

User Buffer

Specify a user buffer for the GET operation. The GET operation copies
the retrieved record to this buffer if you do not specify locate mode
(see next section, Locate Mode); the GET operation may copy the
retrieved record to this buffer even if you specify locate mode.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (SEQUENTIAL ACCESS)

Specify the address of the user buffer in the l-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the l-word
Usz field of the RAB.

If the file is in VFC record format, specify the address of a buffer
for the fixed-length portion of the record in the l-word RHB field of
the RAB.

Locate Mode

If you want the GET operation to use locate mode (in which the record
may not be transferred to the user buffer), set the RBSLOC mask in the
l-word ROP field of the RAB; if you do not set this mask, the record
is transferred to the user buffer.

STREAM CONTEXT

The current-record context after a sequential access GET operation is
the retrieved record; the next-record context is the record following
the retrieved record.

If the GET operation returns an error completion, the current-record
context is undefined, and the next-record context is unchanged.

RETURNED VALUES

Record

The GET operation returns the address and size of the retrieved record
in the 1l-word RBF field of the RAB, and the size (in bytes) of the
record in the l-word RSZ field of the RAB.

If you did not specify locate mode for the GET operation, the record
address returned in the RBF field is the address you specified in the
UBF field; 1if you specified locate mode, the record address returned
in the RBF field is either the address you specified in the UBF field,
or the address of a location in an I/0 buffer.

If the file is 1in VFC format, the GET operation writes the
fixed-length portion of the record in the buffer you specified in the
RHB field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, a sequential-access GET operation returns the relative record
number (RRN) for the retrieved record in the 2-word BKT field of the
RAB.

RFA

The GET operation returns the record file address (RFA) for the
retrieved record in the 3-word RFA field of the RAB.

OPERATION MACRO DESCRIPTIONS

SGET MACRO (SEQUENTIAL ACCESS)

Completion Status and Value

The GET operation returns completion status in the l-word STS field of

the RAB and returns a completion value in the l-word STV field of the
RAB. Appendix A lists completion status symbols and values.

CHECKLISTS
Table 5-29 lists control block fields that are input to the GET

operation. Table 5-30 lists control block fields that are output by
the GET operation.

Table 5-29: GET (Sequential Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB RAC Record access code

RBS$SEQ Sequential access

RAB RHB VFC control buffer address
RAB ROP Record processing option mask

RBSASY Asynchronous operation
RBSLOC Locate mode

RAB UBF User buffer address
RAB USZz User buffer size (bytes)

Table 5-30: GET (Sequential Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RBF Record buffer address

RAB RFA Record file address

RAB RSZ Record size (bytes)

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SGET MACRO (KEY ACCESS)
5.16 SGET MACRO (KEY ACCESS)
The S$GET macro calls the GET operation routine to transfer a record
from a sequential disk file (with fixed-length records), a relative
file, or an indexed file to an I/0 buffer and to a user buffer.
The target of a key-access GET operation 1is the record having the
specified key (under the specified match criterion). For a relative
file or for a sequential disk file with fixed-length records, the key
is a relative record number (RRN); for an indexed file, the key is an
index key under the specified index.
FORMAT
The format for the SGET is:
S$GET rabaddr[,[erraddr] [,sucaddr]]

where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the GET operation.

OPTIONS

Internal Stream Identifier

The GET operation reads the internal stream identifier from the l-word
ISI field of the RAB.

Asynchronous Operation

If you want to execute the GET operation asynchronously, set the
RBSASY mask in the 1l-word ROP field of the RAB; if you do not set
this mask, the GET operation executes synchronously. (Your program
must also have given the ASYN argument to the RABSB macro that
declared the RAB for the asynchronous operation.)

Key Access

Specify the RBSKEY code in the l-byte RAC field of the RAB,

Key of Reference (Indexed File)

Specify the key of reference in the l-byte KRF field of the RAB. The
key of reference is the reference number (REF field of KEY block) for
the index you want to use for the GET operation.

Key

Specify a buffer containing the key for the record to be retrieved:
specify the address of the key buffer in the l-word KBF field of the
RAB, and specify the size of the key in the l-byte KSZ field of the
RAB.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (KEY ACCESS)

For a relative file or for a sequential file with fixed-length
records, specify a 4-byte binary relative record number (RRN) as the
key, and specify the key size as 0 or 4.

For an indexed file, specify a key of the same type as the key for the
current index, and specify a key size no greater than the key size for
the current index. For a nonstring key, the specified key size must
be the key size defined for the index (or, equivalently, 0); for a
string key, if you specify a key size smaller than the key size for
the 1index, the GET operation searches for a record whose key begins
with the specified partial key (under the specified key criterion).

Key Criterion

Specify a key-criterion mask in the l-word ROP field of the RAB. The
symbols for key-criterion masks are:

RBSKGE Greater-than-or-equal key criterion
RBSKGT Greater-than key criterion

If you specify the key-greater criterion, the GET operation searches
for the first record whose key is greater than the key you specify;
if you specify the key-greater-or-equal criterion, the GET operation
searches for the first record whose key is greater than or equal to
the key you specify; if you specify neither criterion, the GET
operation searches for a record whose key exactly matches the key you
specify.

User Buffer

Specify a user buffer for the GET operation. The GET operation copies
the retrieved record to this buffer if you do not specify locate mode
(see next section, Locate Mode); the GET operation may copy the
retrieved record to this buffer even if you specify locate mode.

Specify the address of the user buffer in the l-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the l-word
USZ field of the RAB.

If the file is in VFC record format, specify the address of a buffer
for the fixed-length portion of the record in the l-word RHB field of
the RAB.

Locate Mode

If you want the GET operation to use locate mode (in which the record
may not be transferred to the user buffer), set the RBSLOC mask in the
l-word ROP field of the RAB; if you do not set this mask, the record
is transferred to the user buffer.

STREAM CONTEXT

The current-record context after a key access GET operation 1is the
retrieved record; the next-record context is the record following the
retrieved record.

If the GET operation returns an error completion, the current-record
context is undefined, and the next-record context is unchanged.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (KEY ACCESS)

RETURNED VALUES

Record

The GET operation returns the address and size of the retrieved record
in the 1l-word RBF field of the RAB, and the size (in bytes) of the
record in the l-word RSZ field of the RAB.

If you did not specify locate mode for the GET operation, the record
address returned in the RBF field is the address you specified in the
UBF field. 1If you specified locate mode, the record address returned
in the RBF field is either the address you specified in the UBF field,
or the address of a location in an I/0 buffer.

If the file is 1in VFC format, the GET operation writes the
fixed-length portion of the record in the buffer you specified in the
RHB field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, a key-access GET operation returns the relative record number
(RRN) for the retrieved record in the 2-word BKT field of the RAB.

RFA

The GET operation returns the record file address (RFA) for the
retrieved record in the 3-word RFA field of the RAB.

Completion Status and Value

The GET operation returns completion status in the l-word STS field of
the RAB and returns a completion value in the l-word STV field of the
RAB. Appendix A lists completion status symbols and values,
CHECKLISTS

Table 5-31 lists control block fields that are input to the GET

operation, Table 5-32 lists control block fields that are output by
the GET operation.

OPERATION MACRO DESCRIPTIONS
$GET MACRO (KEY ACCESS)

Table 5-31: GET (Key Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB KBF Key buffer address

RAB KRF Key of reference

RAB KSZ Key size (bytes)

RAB RAC Record access code

RBSKEY Key access

RAB RHB VFC control buffer address
RAB ROP Record processing option mask

RBSASY Asynchronous operation

RB$KGE Greater-than-or-equal key criterion
RBSKGT Greater-than key criterion

RBSLOC Locate mode

RAB UBF User buffer address
RAB UsSz User buffer size (bytes)

Table 5-32: GET (Key Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RBF Record buffer address

RAB RFA Record file address

RAB RSZ Record size (bytes)

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SGET MACRO (RFA ACCESS)
5.17 $GET MACRO (RFA ACCESS)

The $GET macro calls the GET operation routine to transfer a record
from a file to an I/0 buffer and to a user buffer.

The target of an RFA-access GET operation is the record having the
"record file address (RFA) you specify.

FORMAT
The format for the $GET is:

SGET rabaddr(,[erraddr][,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS

You must supply a RAB for the GET operation.

OPTIONS

Internal Stream Identifier

The GET operation reads the internal stream identifier from the l-word
ISI field of the RAB.

Asynchronous Operation

If you want to execute the GET operation asynchronously, set the
RBSASY mask in the 1l-word ROP field of the RAB; if you do not set
this mask, the GET operation executes synchronously. (Your program
must also have given the ASYN argument to the RABS$B macro that
declared the RAB for the asynchronous operation.)

RFA Access

Specify the RBSRFA code in the l-byte RAC field of the RAB.

RFA

Specify the RFA for the record to be retrieved in the 3-word RFA field
of the RAB.

User Buffer

Specify a user buffer for the GET operation. The GET operation copies
the retrieved record to this buffer if you do not specify locate mode
(see next section, Locate Mode); the GET operation may copy the
retrieved record to this buffer even if you specify locate mode.

Specify the address of the user buffer in the l-word UBF field of the
RAB, and specify the size (in bytes) of the user buffer in the l-word
USZ field of the RAB.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (RFA ACCESS)

If the file is in VFC record format, specify the address of a buffer
for the fixed-length portion of the record in the l-word RHB field of
the RAB.

Locate Mode

If you want the GET operation to use locate mode (in which the record
may not be transferred to the user buffer), set the RBSLOC mask in the
l-word ROP field of the RAB; if you do not set this mask, the record
is transferred to the user buffer.

STREAM CONTEXT

The current-record context after an RFA access GET operation 1is the

retrieved record (for an indexed file, in the context of the primary
index); the next-record context is the record following the retrieved
record. If the GET operation returns an error completion, the

current-record context is undefined, and the next-record context |is
unchanged.

RETURNED VALUES

Record

The GET operation returns the address and size of the retrieved record
in the 1-word RBF field of the RAB, and the size (in bytes) of the
record in the l-word RSZ field of the RAB.

If you did not specify locate mode for the GET operation, the record
address returned in the RBF field is the address you specified in the
UBF field. If you specified locate mode, the record address returned
in the RBF field is either the address you specified in the UBF field,
or the address of a location in an I/0 buffer.

If the file is in VFC format, the GET operation writes the
fixed-length portion of the record in the buffer you specified in the
RHB field of the RAB.

RRN

For a relative file or for a sequential disk file with fixed-length
records, an RFA-access GET operation returns the relative record
number (RRN) for the retrieved record in the 2-word BKT field of the
RAB.

Completion Status and Value

The GET operation returns completion status in the l-word STS field of
the RAB and returns a completion value in the l-word STV field of the
RAB. Appendix A lists completion status symbols and values.
CHECKLISTS

Table 5-33 lists control block fields that are 1input to the GET

operation. Table 5-34 lists control block fields that are output by
the GET operation.

OPERATION MACRO DESCRIPTIONS
SGET MACRO (RFA ACCESS)

Table 5-33: GET (RFA Access) Input Fields

Block Field Description

RAB ISI Internal stream identifier
RAB RAC Record access code

RBSRFA RFA access

RAB RFA Record file address
RAB RHB VFC control buffer address
RAB ROP Record processing option mask

RBSASY Asynchronous operation
RBSLOC Locate mode

RAB UBF User buffer address
RAB USZ User buffer size (bytes)

Table 5-34: GET (RFA Access) Output Fields

Block Field Description

RAB BKT Relative record number (RRN)
RAB RBF Record buffer address

RAB RSZ Record size (bytes)

RAB STS Completion status code

RAB STV Completion status value

OPERATION MACRO DESCRIPTIONS
SNXTVOL MACRO
5.18 S$NXTVOL MACRO
The $NXTVOL macro calls the NXTVOL operation routine to advance the
context for a stream to the beginning of the next magtape volume,
FORMAT
The format for the S$NXTVOL is:

SNXTVOL rabaddr([,[erraddr] [,sucaddr]]
where rabaddr is the address of the RAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.
CONTROL BLOCKS

You must supply a RAB for the NXTVOL operation.

OPTIONS

Internal Stream Identifier

The NXTVOL operation reads the internal stream identifier from the
l-word ISI field of the RAB.

Asynchronous Operation

If you want to execute the NXTVOL operation asynchronously, set the
RBSASY mask in the 1-word ROP field of the RAB; if you do not set
this mask, the NXTVOL operation executes synchronously. (Your program
must also have given the ASYN argument to the RABSB macro that
declared the RAB for the asynchronous operation.)

STREAM CONTEXT
The NXTVOL operation destroys the current-record context; the
next-record context after the NXTVOL operation is the first record of

the new volume (or end-of-file, if there are no records on the new
volume) .

RETURNED VALUES

Completion Status and Value

The NXTVOL operation returns completion status in the l-word STS field
of the RAB and returns a completion value in the l-word STV field of
the RAB, Appendix A lists completion status symbols and values.

CHECKLISTS
Table 5-35 lists control block fields that are input to the NXTVOL

operation. Table 5-36 lists control block fields that are output by
the NXTVOL operation.

OPERATION MACRO DESCRIPTIONS

Table 5-35: NXTVOL Input Fields

$NXTVOL MACRO

Block Field

Description

RAB ISI
RAB ROP

Internal stream identifier
Record processing option mask

RBSASY Asynchronous operation

Table 5-36: NXTVOL Output Fields

Block Field

Description

RAB STS
RAB STV

Completion status code
Completion status value

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

5.19 SOPEN MACRO

The $OPEN macro calls the OPEN operation routine to open a file for
processing by the calling task.

FORMAT
The format for the SOPEN is:
SOPEN fabaddr|[,[erraddr][,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS
You must supply a FAB for the OPEN operation.

If you supply a NAM block and specify open by NAM block, the OPEN
operation reads NAM block fields to obtain identifiers for the target
file.

To supply a NAM block for the OPEN operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

For each ALL block that you supply, the OPEN operation fills its
fields with wvalues describing the corresponding area (if any) of the
file. You need not supply an ALL block for every area of the file.
(If you are opening the file for block access, the OPEN operation
writes information describing the file as a whole in the all block for
area 0.)

For each KEY block that you supply, the OPEN operation fills its
fields with values describing the corresponding index (if any) for the
file. You need not supply a KEY block for every index of the file.
(If you are opening the file for block access, the OPEN operation does
not write in KEY blocks.)

If you supply a PRO block for a disk file, the OPEN operation fills
its fields with values showing the owner and protection for the file.

If you supply a DAT block for a disk file, the OPEN operation fills
its fields with wvalues showing the creation date, expiration date,
revision date, and revision number for the file.

If you supply a SUM block for a relative or indexed file, the OPEN
operation fills its fields with values showing the number of areas and
indexes for the file, and with its prologue version number. (If vyou
are opening the file for block access, the OPEN operation returns the
number of areas and number of keys as 0, and does not return the
prologue version number.)

This information is especially useful if you do not know how many
areas or Kkeys an indexed file has when you open it. If you supply a
SUM block for the OPEN operation, you can get the number of areas and
number of indexes from its fields, and then supply the correct number
of ALL blocks and KEY blocks for the DISPLAY operation.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the OPEN
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be 1in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive.

Multiple DAT, PRO, or SUM XABs are illegal.
OPTIONS

File Specification (Nonwildcard OPEN Operation)

The OPEN operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).

RMS-11 defaults are:

e Device -- The device to which the specified logical channel is
assigned, or SY: if the specified logical channel is not
assigned to any device.

e Directory -- The current directory for the task.
e Name, type, version -- Defaulted to null.
The file string and the default string must not contain wildcards.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the l-byte FNS
field of the FAB; 1if you specify 0 in the FNS field, the OPEN
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
l1-byte DNS field of the FAB; if you specify 0 in the DNS field, the
OPEN operation uses no default string.

If you set the FBSFID mask in the l-word FOP field of the FAB and
supply a NAM block, the OPEN operation reads the device identifier
from the 2-word DVI field of the NAM block; if this value is nonzero,
the specified device overrides the device in the merged string.

In the same circumstance, the OPEN operation reads the directory
identifier from the 3-word DID field of the NAM block; if this value
is nonzero, the specified directory overrides the directory in the
merged string.

In the same circumstance, the OPEN operation reads the file identifier
from the 3-word FID field of the NAM block; if this value is zero,
the specified file overrides any directory, name, type, and version
elements previously obtained.

5-73

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Open with Wildcard Context

If you want to open a file that was found by a wildcard SEARCH
operation (using the FAB and NAM block that the SEARCH operation
used), set the FBSFID mask in the l-word FOP field of the FAB; this
causes the OPEN operation to open the file without altering wildcard
context.

Expanded String Buffer

If you want the OPEN operation to return the expanded string for the
opened file, provide a buffer for the string. Specify the address of
the expanded string buffer in the l-word ESA field of the NAM block
and its size (in bytes) in the l-byte ESS field of the NAM block; |if
you specify 0 in the ESS field, the OPEN operation does not return the
expanded string.

Key Name Buffer

If you want the key name string for an index returned to a buffer,
supply a KEY block for the index. Specify the index reference number
in the 1l-byte REF field of the KEY block, and specify the address of a
32-byte buffer in the l-word KNM field of the KEY block. If you do
not supply a KEY block for an index, or if you specify 0 in its KNM
field, the OPEN operation does not return the key name string.

While-Open Default Extension Sizes

If you want to override the default extension size for the file while
it is open, specify the while-open default file extension size (in
blocks) in the l-word DEQ field of the FAB. If you specify 0, the
OPEN operation does not establish a while-open default extension size
for the file; instead, it uses the permanent default extension size.

The while-open default extension size for a file remains in force
while the file 1is open, but does not change the file extension size
established when the file was created.

Private Buffer Pool

If you want the OPEN operation to use a private buffer pool instead of
the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and its size
(in Dbytes) in the l-word BPS field of the FAB; this size must be a
multiple of 4.

If you specify 0 in either the BPA field or the BPS field, the OPEN
operation uses the central buffer pool.

The pool that the OPEN operation uses is also used by the DISPLAY and
EXTEND operations, and by stream and record or block operations while
the file is open.

Logical Channel

Specify the logical channel for the OPEN operation in the 1l-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
0.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

The logical channel that the OPEN operation uses is also used by the
DISPLAY and EXTEND operations, and by stream and record or block
operations while the file is open.

Retrieval Pointers

Specify the number of retrieval pointers for the open £file in the
l-byte RTV field of the FAB. If you specify 0, the OPEN operation
uses the operating system default; if you specify -1, the OPEN
operation maps as much of the file as possible.

Requested-Access

Specify one or more requested-access masks in the l-byte FAC field of
the FAB. This mask determines the access that the opening program has
while the file is open. If you specify no requested-access mask,
find/get access is allowed (the OPEN operation uses the mask FBS$GET).
The symbols for requested-access masks are:

FBSDEL Request find/get/delete access
FBSGET Request find/get access

FBSPUT Request put access

FBSREA Request block read access

FBSTRN Request find/get/truncate access
FBSUPD Request find/get/update access
FBSWRT Request block write access

Note that FBSREA and FBS$WRT override any record access requested.

Access Sharing

Specify the kinds of access that your program will share with other
programs by setting an access-sharing mask in the l-byte SHR field of
the FAB. The symbols for access-sharing masks are:

FBSGET Share find/get access

FBSNIL No access sharing

FBSUPI Share any access (user-provided interlock)
FBSWRI Share find/get/put/update/delete access

The kinds of access sharing are:
e Shared read access

Your program is willing to allow other programs to read the
file, but not to write it,

e Shared write access

Your program is willing to allow other programs to both read
and write the file. Shared write access is not allowed for a
sequential file unless the file has undefined record format
and your program opens the file for block access; shared
write access is also not allowed for a relative or indexed
file that your program opens for block access. In such cases,
RMS-11 automatically converts the shared write access
specification to a shared read access specification
internally.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

® No shared access

Your program is not willing to allow other programs to either
read or write the file. RMS-11 does, however, allow other
programs to read the file unless your program also requests
some form of write access.

e User-provided interlocking

Your program and other cooperating programs define and enforce
their own access interlocking; RMS-11 does not check access
sharing. User-provided interlocking is allowed only for
sequential disk files; otherwise, the FBSUPI mask is ignored
(but other masks are honored).

Deferred Writing

If you want deferred buffer writing for the open file, set the FBSDFW
mask in the l-word FOP field of the FAB; This means that RMS-11 does
not necessarily write its Dbuffers during a write-type operation
(DELETE, PUT, or UPDATE), but instead writes buffers only when it
needs them for other operations (or when your program executes the
FLUSH operation for the stream).

If you do not set the FBSDFW mask, the DELETE, PUT, and UPDATE
operations write buffers to the file immediately.

Note that record operations always use a form of deferred buffer
writing for sequential files, and that block operations never use
deferred buffer writing. Therefore you need only decide whether to

use deferred writing for a record stream to a relative or indexed
file.

File Locking

If you want the file to remain unlocked even if it 1is <closed
abnormally, set the FBS$SDLK mask in the l-word FOP field of the FAB;
if you do not set this mask, the operating system locks the file if it
is closed abnormally.

Magtape Beginning-of-File Positioning

If you have requested some form of write access, and if you want a
magtape file positioned to the Dbeginning of the file when it is
opened, set the FBSNEF mask in the l-word FOP field of the FAB; if
you do not set this mask, and if you requested some form of write
access, the magtape is positioned to the end-of-file when the file |is
opened.

Rewinding Magtape Before Open

If you want a magtape rewound before a magtape file is opened, set the
FBSRWO mask in the 1l1-word FOP field of the FAB; if you do not set
this mask, the OPEN operation searches only from the current magtape
position to the end of the magtape.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Rewinding Magtape on Close

If you want the magtape rewound when the opened file 1is closed, set
the FBSRWC mask in the l-word FOP field of the FAB. If you do not set
this mask, the magtape will not be rewound on close unless you set the
FBSRWC mask for the CLOSE operation. Note, however, that if you set
the FB$SRWC mask for the OPEN operation, the magtape will be rewound
even if you do not set the FBSRWC mask for the CLOSE operation.

RETURNED VALUES

Internal File Identifier

The OPEN operation writes an internal file identifier in the 1l-word
IFI field of the FAB. (The CLOSE operation clears the internal file
identifier.)

The CLOSE, CONNECT, DISPLAY, and EXTEND operations read the internal
file identifier; do not alter the IFI field while the file is open.

Device Characteristics

The OPEN operation returns device characteristics as masks in the
l-byte DEV field of the FAB. The device characteristics are:

e Printer or terminal (indicated by the set FB$CCL mask in the
l-byte DEV field of the FAB and the set FB$SREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask
in the 1-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.,

® Unit-record device (indicated by the set FBSREC mask in the
l-byte DEV field of the FAB).

® Non-ANSI magtape or cassette tape (indicated by the set FBS$SDI
mask in the 1l-byte DEV field of the FAB and the set FBS$SREC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device.

® ANSI-format magtape (indicated by the set FBS$SQD mask in the
l-byte DEV field of the FAB).

Device, Directory, and File Identifiers

If you supply a NAM block, the OPEN operation writes a device
identifier in the 2-word DVI field of the NAM block, a directory
identifier in the 3-word DID field of the NAM block (unless directory
processing was bypassed due to use of the file identifier on input),
and a file identifier in the 3-word FID field of the NAM block.

Expanded String

If you specify a buffer for the expanded string for the file (ESA and
ESS fields 1in the NAM block), the OPEN operation writes the expanded
string for the opened file in this buffer, and writes the length (in
bytes) of the string in the l-byte ESL field of the NAM block.

5-77

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

File Allocation, Bucket Size, and Contiguity

The OPEN operation writes the file allocation size (in blocks) in the
2-word ALQ field of the FAB, and the file bucket size or largest area
bucket size (in blocks) in the l-byte BKS field of the FAB. If the
file 1is contiguous, the OPEN operation sets the FBSCTG mask in the
l-word FOP field of the FAB.

Extension size

The OPEN operation writes the current default extension size for the
open file in the l-word DEQ field of the FAB.

File Organization

The OPEN operation writes the file organization code in the l-byte ORG
field of the FAB. The symbols for file organization codes are:

FBSIDX Indexed file organization
FBSREL Relative file organization
FBSSEQ Sequential file organization

Record Format

The OPEN operation writes the record format code 1in the 1-byte RFM
field of the FAB. The symbols for record format codes are:

FBSFIX Fixed-length record format
FBSSTM Stream record format

FBSUDF Undefined record format
FBSVAR Variable-length record format
FBSVFC VFC record format

If the record format is VFC, the OPEN operation writes the size (in
bytes) of the VFC header field in the l-byte FSZ field of the FAB;
otherwise it writes 0 in the FSZ field.

Blocked Records (Sequential Disk File)

If the file was created specifying blocked records, the OPEN operation
sets the FB$BLK mask in the l-byte RAT field of the FAB. (The OPEN
operation sets the mask if it was set when the file was created, even
if the file 1is not a sequential file; preservation of this mask
allows you to copy a sequential file to a file of a different
organization and back without losing the blocked-record
characteristic.)

Record-Output Handling

The OPEN operation writes the record-output mask in the 1l-byte RAT
field of the FAB. The symbols for record-output masks are:

FBSCR Add CRLF to print record (LF-record-CR)

FBSFTN FORTRAN-style carriage-control character in record
FBSPRN VFC print record handling

5-78

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Record Size

The OPEN operation writes the maximum permitted record size (in bytes)
in the l1-word MRS field of the FAB.

Maximum Record Number

If the file is a relative file (FBSREL in the ORG field), the OPEN
operation writes the maximum record number in the 2-word MRN field of
the FAB (unless you are opening the file for block access).

Magtape Block Size

For a magtape file, the OPEN operation writes the block size (in
characters) in the l-word BLS field of the FAB.

Longest Record Length

The OPEN operation writes the length of the longest record in the file
in the l-word LRL field of the FAB; this value is meaningful only for
sequential files.

Area Descriptions

For each ALL block that you supply, the OPEN operation writes a
description in its fields of the corresponding area of the file
(unless you are opening the file for block access). Area 0 is
described in the ALL block containing 0 in its AID field, area 1 is
described in the ALL block containing 1 in 1its AID field, and so
forth,

The OPEN operation writes three sizes for a file area: the size (in’
blocks) of the unused portion of the area in the 2-word ALQ field of
the ALL block, the default area extension size (in blocks) 1in the
l-word DEQ field of the ALL block, and the area bucket size (in
blocks) in the 1l-byte BKZ field of the ALL block. (If you are opening
the file for block access, only the ALL block for area 0 is written,
and the ALL block contains the current file allocation size, default
file extension size, and file bucket size.)

The OPEN operation clears the l-byte ALN field of the ALL block and
the XBSHRD mask in the l-byte AOP field of the ALL block. If you are
opening a sequential or relative file for any access, or an indexed
file for block access, the OPEN operation sets the XBS$CTG mask in the
l-byte AOP field of the ALL block if the file 1is contiguous;
otherwise it clears the entire l-byte AOP field of the ALL block.

Key Descriptions

For each KEY block that you supply, the OPEN operation writes a
description in its fields of the corresponding index of the file.
(The OPEN operation does not write in KEY blocks if you are opening
the file for block access.)

The primary index is described in the KEY block containing 0 in its
REF field, the first alternate index is described in the KEY block
containing 1 in its REF field, and so forth.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

The OPEN operation writes the key data type code in the 1-byte DTP
field of the KEY block. The symbols for key data type codes are:

XB$BN2 16-bit unsigned integer
XB$SBN4 32-bit unsigned integer
XBSIN2 15-bit signed integer
XBSIN4 31-bit signed integer
XB$SPAC Packed decimal number
XBSSTG String

The OPEN operation writes the sizes of key segments in the 8-byte SIZ
field of the KEY block. The size (in bytes) of the first key segment
is in the first byte of the SIZ field, the size of the second segment
is in the second byte of the SIZ field, and so forth, 1If the key has
fewer than eight segments, the first byte containing 0 establishes the
number of key segments.

The OPEN operation writes the positions of key segments in the 8-word
POS field of the KEY block. The position (leftmost position is 0) of
the first key segment is in the first word of the POS field, the
position of the second segment is in the second word of the POS field,
and so forth, If the key has fewer than eight segments, the remaining
words of the POS field contain unpredictable values.

The OPEN operation writes a key flags mask in the l-byte FLG field of
the KEY block. The symbols for key flags masks are:

XBSCHG Record key changes allowed on update
XBSDUP Duplicate record keys allowed
XBSINI No entries yet made in index
XBSNUL Null record keys not indexed

The OPEN operation writes the null-key character in the 1l-byte NUL
field of the KEY block; this character is meaningful only if the
XBSNUL mask in the FLG field is set and if the key 1is a string key
(XBSSTG in the DTP field).

The OPEN operation writes area numbers for the index: the area for
the data level in the l-byte DAN field of the KEY block, the area for
the lowest index level in the l-byte LAN field of the KEY block, and
the area for higher index levels in the l-byte IAN field of the KEY
block.

The OPEN operation writes bucket fill numbers for the index areas:
the fill number for the data area in the l-word DFL field of the KEY
block, and the fill number for the index areas in the l-word IFL field
of the KEY block.

The OPEN operation writes bucket sizes for index areas: the data area
bucket size (in blocks) in the l-byte DBS field of the KEY block, and
the index area bucket size (in blocks) in the l-byte IBS field of the
KEY block.

The OPEN operation writes virtual block numbers for the index areas:
the wvirtual block number for the first data bucket in the 2-word DVB
field of the KEY block, and the virtual block number of the root index
bucket in the 2-word RVB field of the KEY block.

The OPEN operation writes the number of levels in the index (not
including the data level) in the l-byte LVL field of the KEY block.

The OPEN operation writes the minimum size (in bytes) of a record that
contains the key for the index in the l-word MRL field of the KEY
block.

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

The OPEN operation writes key segment information for the index: the
number of key segments in the l-byte NSG field of the KEY block, and
the total key size (sum of segments, in bytes) in the l-byte TKS field
of the KEY block.

File Owner and Protection (Disk File)

If the file is a disk file, and if you supply a PRO block, the OPEN
operation writes the project (or group) portion of the file owner code
in the l-word PRJ field of the PRO block, the programmer (or member)
portion of the file owner code in the l-word PRG field of the PRO
block, and the file protection code in the l-word PRO field of the PRO
block.

File Dates

If you supply a DAT block for a disk file, the OPEN operation writes
four values in its fields: the creation date in the 4-word CDT field
of the DAT block, the expiration date in the 4-word EDT field of the
DAT block, the revision date in the 4-word RDT field of the DAT block,
and the revision number (number of times the file has been opened for
write access and then closed) in the l-word RVN field of the DAT
block.

File Summary Information

If you supply a SUM block and are opening an indexed file, the OPEN
operation writes three values in its fields: the number of file areas
in the l1-byte NOA field of the SUM block, the number of file indexes
in the 1-byte NOK field of the SUM block, and the prologue version
number (for a relative or indexed file) in the l-word PVN field of the
SUM block. (If you are opening the file for block access, the OPEN
operation returns the number of areas and the number of keys as 0, and
does not return the prologue version number.)

File Specification Characteristics

The OPEN operation sets masks in the l-word FNB field of the NAM block
to show which file specification elements were present in the file
string and default string. These masks and their meanings are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

Wildcard Context Information

If you cleared the FBSFID mask, the OPEN operation clears the NBSWCH
mask in the l-word FNB field of the NAM block and the l-byte RSL field
of the NAM block; this shows that no wildcard context information
exists after the operation and that no resultant string was returned.
If you set the FBSFID mask, the OPEN operation does not alter the

5-81

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

NBSWCH mask, and (if the NBSWCH mask is set) does not alter the RSL
field.

Completion Status and Value
The OPEN operation returns completion status in the l-word STS field

of the FAB and returns a completion value in the l-word STV field of
the FAB. Appendix A lists completion status symbols and values.

CHECKLISTS

Table 5-37 lists control block fields that are input to the OPEN
operation. Table 5-38 lists control block fields that are output by
the OPEN operation.

Table 5-37: OPEN Input Fields

Block Field Description

ALL AID Area number

ALL NXT Next XAB address

DAT NXT Next XAB address

FAB BPA Private buffer pool address

FAB BPS Private buffer pool size (bytes)

FAB DEQ While-open file default extension size (blocks)
FAB DNA Default string address

FAB DNS Default string size (bytes)

FAB FAC Requested access mask

FBSDEL Request find/get/delete access
FBSGET Request find/get access

FBSPUT Request put access

FBSREA Request block read access

FBSTRN Request find/get/truncate access
FBSUPD Request find/get/update access
FBSWRT Request block write access

FAB FNA File string address
FAB FNS File string size (bytes)
FAB FOP File processing option mask

FBSDFW Defer writing

FBSDLK No file locking on abnormal close

FBSFID Use information in NAM block

FBSNEF No end-of-file magtape positioning
FBSRWC Rewind magtape after closing file
FBSRWO Rewind magtape before searching for file

FAB LCH Logical channel number
FAB NAM NAM block address

FAB RTV Retrieval pointer count
FAB SHR Shared access mask

FBSGET Share find/get access

FBSNIL No access sharing

FBSUPI Share any access (user-provided interlock)
FBSWRI Share find/get/put/update/delete access

(Continued on next page)

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Table 5-37 (Cont.): OPEN Input Fields

Block Field Description

FAB XAB XAB address

KEY KNM Key name buffer address

KEY NXT Next XAB address

KEY REF Index reference number

NAM DID Directory identifier

NAM DVI Device identifier

NAM ESA Expanded string buffer address

NAM ESS Expanded string buffer size (bytes)
NAM FID File identifier

NAM FNB File specification mask

NBSWCH Wildcard context established

PRO NXT Next XAB address
SUM NXT Next XAB address

Table 5-38: OPEN Output Fields

Block Field Description

ALL ALN Area alignment mask
ALL ALQ Unused area allocation size (blocks)
ALL AOP Area option mask

XBSCTG Contiguous area
XBSHRD Hard area location (cleared)

ALL BKZ Area bucket size (blocks)

ALL DEQ Area default extension size (blocks)
DAT CDT File creation date

DAT EDT File expiration date

DAT RDT File revision date

DAT RVN File revision number

FAB ALQ Current file allocation (blocks)

FAB BKS File bucket size (blocks)

FAB BLS Magtape block size (characters)

FAB DEQ Current file default extension size (blocks)
FAB DEV Device characteristic mask

FBSCCL Carriage-control device
FBSMDI Multidirectory device
FBSREC Record-oriented device
FBS$SDI Single-directory device
FBS$SQD Sequential device
FBSTRM Terminal device

FAB FOP File processing option mask

FBSCTG Contiguous file

FAB FSZ Fixed control area size for VFC records (bytes)
FAB IFI Internal file identifier
FAB LRL Longest record length

(Continued on next page)

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Table 5-38 (Cont.): OPEN Output Fields

Block Field Description

FAB MRN Maximum record number
FAB MRS Maximum record size (bytes)
FAB ORG File organization code

FBSSEQ Sequential file organization
FBSREL Relative file organization
FBSIDX Indexed file organization

FAB RAT Record handling mask
FBSBLK Blocked records
FBSCR Add CRLF to print record (LF-record-CR)
FBSFTN FORTRAN-style carriage-control character in
record

FBSPRN VFC print record handling
FAB RFM Record format code

FBSUDF Undefined record format
FBSFIX Fixed-length record format
FBSVAR Variable-length record format
FBSVFC VFC record format

FBSSTM Stream record format

FAB STS Completion status code

FAB STV Completion status value

KEY DAN Data area number

KEY DBS Data area bucket size (blocks)
KEY DFL Data bucket fill factor

KEY DTP Key data type code

XBS$BN2 16-bit unsigned integer
XBSBN4 32-bit unsigned integer
XBSIN2 15-bit signed integer
XBSIN4 31-bit signed integer
XBSPAC Packed decimal number
XBSSTG String

KEY DVB First data bucket virtual block number
KEY FLG Index option mask

XBSCHG Record key changes allowed on update
XBS$SDUP Duplicate record keys allowed
XBSINI No entries yet made in index
XB$SNUL Null record keys not indexed

KEY IAN Higher level index area number

KEY IBS Index area bucket size (blocks)

KEY IFL Index bucket fill factor

KEY LAN Lowest index level area number

KEY LVL Number of index levels (not including data level)
KEY MRL Minimum length of record containing key (bytes)
KEY NSG Key segment count

KEY NUL Null key character

KEY POS Key segment positions

(Continued on next page)

OPERATION MACRO DESCRIPTIONS
SOPEN MACRO

Table 5-38 (Cont.): OPEN Output Fields

Block Field

Description

KEY
KEY
KEY
NAM
NAM
NAM
NAM
NAM

NAM
PRO
PRO
PRO
SUM
SUM
SUM

RVB
SI1Z
TKS
DID
DVI
ESL
FID
FNB

RSL
PRG
PRJ
PRO
NOA
NOK
PVN

Root index bucket virtual block number

Key segment sizes (bytes)

Total key size (sum of key segment sizes) (bytes)
Directory identifier

Device identifier

Expanded string length (bytes)

File identifier

File specification mask

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NBSQUO Quoted string in file string or default
string

NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version 1in file string or default
string

NBSWDI Wildcard directory in file string or
default string

NBSWNA Wildcard file name in file string or
default string

NBSWTY Wildcard file type in file string or
default string

NBSWVE Wildcard file version in file string or
default string

NBSWCH Wildcard context established

Resultant string length (bytes) (cleared)
Programmer or member portion of file owner code
Project or group portion of file owner code
File protection code

Number of areas

Number of indexes

Prologue version number

OPERATION MACRO DESCRIPTIONS
SPARSE MACRO

5.20 $PARSE MACRO

The $PARSE macro calls the PARSE operation routine to analyze a file
specification.

FORMAT
The format for the $PARSE is:
SPARSE fabaddr|[,[erraddr]{,sucaddr]]

where fabaddr is the address of the FAB for the operation; erraddr is
the address of the error handler for the operation; and sucaddr is
the address of the success handler for the operation.

CONTROL BLOCKS
You must supply a FAB for the PARSE operation.

If you supply a NAM block for the PARSE operation, the operation
routine writes file information in its fields. This information is
suitable as input to subsequent wildcard SEARCH operations.

To supply a NAM block for the PARSE operation, specify the address of
the NAM block in the l-word NAM field of the FAB.

To supply XABs (ALL, DAT, KEY, PRO, and SUM blocks) for the PARSE
operation, specify the address of the first XAB in the l-word XAB
field of the FAB; specify the address of the next XAB (if any) in the
l-word NXT field of each XAB; specify 0 in the NXT field of the last
XAB.

All KEY blocks must be together in the chain of XABs, and must be 1in
ascending order (by the index reference number in the l-byte REF field
of the KEY block); the index reference numbers need not be
consecutive.

All ALL blocks must be together in the chain of XABs, and must be 1in
ascending order (by the area identifier in the l-byte AID field of the
ALL block); the area identifiers need not be consecutive,

Multiple DAT, PRO, or SUM XABs are illegal.

OPTIONS

File Specification

The PARSE operation constructs the full file specification from the
file string, the default string (which contributes only elements not
present in the file string), and RMS-11 defaults (which contribute
elements not present in either the file string or the default string).

OPERATION MACRO DESCRIPTIONS
SPARSE MACRO

RMS-11 defaults are:

e Device -- The device to which the specified logical channel is
assigned, or SY: if the specified logical channel is not
assigned to any device.

® Directory -- The current directory for the task.
e Name, type, version -- Defaulted to null.

Specify the address of the file string in the l-word FNA field of the
FAB. Specify the size (in bytes) of the file string in the l-byte FNS
field of the FAB; if you specify 0 in the FNS field, the PARSE
operation uses no file string.

Specify the address of the default string in the l-word DNA field of
the FAB. Specify the size (in bytes) of the default string in the
l-byte DNS field of the FAB; 1if you specify 0 in the DNS field, the
PARSE operation uses no default string.

Expanded String Buffer

If you want the PARSE operation to return the expanded string for the
file, provide a buffer for the string. If you want subsequent
wildcard SEARCH operations to use the results of the PARSE operation,
you must provide an expanded string buffer.

Specify the address of the expanded string buffer in the 1l-word ESA
field of the NAM block. Specify the size (in bytes) of the expanded
string buffer in the l-byte ESS field of the NAM block; if vyou
specify 0 in the ESS field, the PARSE operation does not return the
expanded string.

Private Buffer Pool

If you want the PARSE operation to use a private buffer pool instead
of the central buffer pool, specify the address of the (word-aligned)
private buffer pool in the l-word BPA field of the FAB, and 1its size
(in Dbytes) in the l-word BPS field of the FAB; this size must be a
multiple of 4,

If you specify 0 in either the BPA field or the BPS field, the PARSE
operation uses the central buffer pool.

Logical Channel

Specify the logical channel for the PARSE operation in the 1l-byte LCH
field of the FAB. The logical channel number must not be the same as
the logical channel number for any already-open file, and must not be
0.

RETURNED VALUES

Wildcard Initialization

If you supplied a NAM block to be initialized for wildcard SEARCH
operations, the PARSE operation clears several fields: the 3-word DID
field of the NAM block, the l-byte RSL field of the NAM block, the
l1-word WCC field of the NAM block, and the l-word WDI field of the NAM
block. These cleared fields are part of the initialization for

5-87

OPERATION MACRO DESCRIPTIONS
SPARSE MACRO

subsequent wildcard SEARCH operations.

The PARSE operation writes a match-pattern (for subsequent wildcard
SEARCH operations) in the expanded string buffer, and writes the
length (in bytes) of the expanded string in the l-byte ESL field of
the NAM block.

The PARSE operation sets the NBSWCH mask in the l-word FNB field of
the NAM block, showing that wildcard information in the NAM block is
initialized.

Device Characteristics

The PARSE operation returns device characteristics as masks in the
l-byte DEV field of the FAB. The device characteristics are:

e Printer or terminal (indicated by the set FB$CCL mask in the
l-byte DEV field of the FAB and the set FBSREC mask in the
l-byte DEV field of the FAB; for a terminal, the FBSTRM mask
in the 1l-byte DEV field of the FAB is also set); RMS-11
treats a printer or terminal as a unit-record device.

e Disk, DECtape, or DECTAPE II (indicated by the set FBSMDI mask
in the 1l-byte DEV field of the FAB); RMS-11 treats a disk,
DECtape, or DECTAPE II as a disk device.

® Unit-record device (indicated by the set FBSREC mask in the
l-byte DEV field of the FAB).

® Non-ANSI magtape or cassette tape (indicated by the set FBS$SDI
mask in the 1l-byte DEV field of the FAB and the set FBS$SREC
mask in the l-byte DEV field of the FAB); RMS-11 treats a
non-ANSI magtape or a cassette tape as a unit-record device,

® ANSI-format magtape (indicated by the set FBS$SQD mask in the
l-byte DEV field of the FAB).

Device Identifier

If you supply a NAM block, the PARSE operation writes a device
identifier in the 2-word DVI field of the NAM block.

File Specification Characteristics

The PARSE operation sets masks in the l-word FNB field of the NAM
block to show which file specification elements were present in the
file string and default string. These masks and their meanings are:

NBSNOD Node in file string or default string

NBSDEV Device in file string or default string

NBSDIR Directory in file string or default string

NB$SQUO Quoted string in file string or default string
NBSNAM File name in file string or default string

NBSTYP File type in file string or default string

NBSVER File version in file string or default string
NBSWDI Wildcard directory in file string or default string
NBSWNA Wildcard file name in file string or default string
NBSWTY Wildcard file type in file string or default string
NBSWVE Wildcard file version in file string or default string

OPERATION MACRO DESCRIPTIONS
SPARSE MACRO

Expanded St